CHAPTER XVIII.

MINERAL INDUSTRY.

§ 1. The Mineral Wealth of Australia.

- 1. Place of Mining in Australian Development.—The discovery of gold in payable quantities first attracted population to Australia in large numbers and was thus a significant factor in its early development. In more recent times the rapid growth of Australia's secondary industries has been associated with considerable expansion in mining for silver-lead-zinc, copper and iron ores, and for coal. However, the value of mineral production has lagged behind that recorded for Australia's large rural industries and in 1949 represented only about 7.3 per cent. of the net value of production of all primary industries.
- 2. Extent of Mineral Wealth.—The extent of the total mineral wealth of Australia cannot yet be regarded as completely ascertained, as large areas of country still await geological surveys. More detailed reference to this matter will be found in preceding issues of the Official Year Book. (See No. 22, p. 755.)

During the years 1934 to 1940 a survey of certain areas in Australia north of the 22nd parallel of south latitude was undertaken by the Governments of the Commonwealth, Queensland and Western Australia. This survey is referred to in § 14 below.

3. Quantity and Value of Production in 1949.—The quantities (where available) and the values of certain of the principal minerals produced in each State, and in Australia as a whole, during 1949, are shown in the tables immediately following. It must be clearly understood that the figures quoted in these tables refer to the quantities and values of the various minerals in the form in which they were reported to the State Mines Departments, and represent amounts which the Mines Departments consider may fairly be taken as accruing to the mineral industry as such. They are not to be regarded as representative of Australia's potentiality as a producer of metals. New South Wales is, of course, in normal times a large producer of iron and steel from iron ore mined in South Australia. As the table shows, the latter State receives credit for this iron ore in its mineral returns. The iron and steel produced therefrom cannot be assigned to the mineral industry of New South Wales, but the value of the transformation from

ore to metal is credited to the manufacturing industry of that State. Similarly, lead, silver-lead, cadmium, cobalt and zinc are credited in the form reported to the State of origin—chiefly New South Wales—although the actual metal extraction is carried out principally in South Australia and Tasmania.

The quantities of cadmium and cobalt recovered in Tasmania from zinc ores mined in New South Wales during 1949 are shown in § 7, par. 2 (page 875).

MINERAL PRODUCTION: QUANTITIES, 1949.

Mineral.	Unit.	N.S.W.	Vic.	Q'land.	S. Aust.	W.Aust.	Tas.	N.T.	Australia
Metallic—					,		·		
Antimony Ore and								ļ	i
Concentrate	ton	307	16	48		22			393
Arsenic Oxide	,,		(a)			33		١	(b) 33
Bauxite	١,,	1,264	4,028		!			!	(b) 33 5,292
Bismuth Concentrate	cwt.	10		18	l [28
Cadmium	ton	(c)		1	1		38		(b) 38
Copper-Ingot and	ŀ							ĺ	1
Matte	,,	2,453	• •	4,925	3		5,229		17,40
Ore Gold	fine oz.	51,793	68,426	76,282	2,198	303 648,426	12,152	4,492 29,781	889,058
Gold Iron Ore	ton	10,313		2 101	1,447,731	12,524	12,132	29,761	1,472,660
Lead	,,	(d),313		37,697	99	14,344	7,874	::	(b) 45,67
Manganese Ore	"	1,580		233	1,856	9,420	7,074		13,089
Molybdenite Concen-	"	-,500		-33	-,-5-	3,4		1	23,009
trate	cwt.	2		116					118
Pyritic Ore and Con-	1	į.						1	
centrate	ton	(a)		(a)	i 1	31,299	(a)		(b) 31,299
Silver	fine oz.	(d) 99,158	12,316	2,872,577	1,749	£ 194,721	1,011,032		64,191,55
Silver-lead Ores, Con-		•							
_ centrate, etc	ton	220,046	••			2,922	• •	23	
Tantalite	lb.				(··	2,606		896	3,502
Tin Concentrate	ton	616	49	1,051	••	35	883	27	2,661
Tungsten—Scheelite		1	! ,					}	ļ
Concen- trate	!	٠.			ا ا		0	ı	
Wolfram	,,,	. 4	••	2	!	1	803	• • •	810
. Concen-					I				1
trate	1	7		50			264	55	376
Zinc and Concentrate	"	257,040		21,241	· :: !	• • •	20,286	33	298,567
Zircon-Rutile-Ilmenite-	, "	-37,1-4-		,	''		20,200		290,50
Monazite Concen-					: }			1	
trate	١,,	30,397		11,061	i I	72			41,530
Fuel—	"	0 .05.				•			1-,55
Coal, Black	!								ļ.
Semi-Anthracite and	į		l ,	. ((1	
Bituminous	,,	10,728,373	122,507	31,970,388	ا إ		181,618	::}	14,105,843
Sub-Bituminous	٠,,	7,725	į	[1,970,300	344,638	750,594		15	14,103,043
Coal-Brown (includ-	1							ĺ	ł
ing Lignite)	,,,	• •	7,375,559	••		• •	• •		7,375,559
Oli (Crude Petroleum)	gal.		34,410						34,410
Shale (OII)	ton							• • •	
Mon Motollio		120,956						::	
Oil (Crude Petroleum) Shale (Oil) Non-Metallic—					! i			•••	120,956
Asbestos	,,	280			17	1,297			1,594
Asbestos	,,	280 1,969			1 <i>7</i> 3,495	1,297			120,956 1,594 5,464
Asbestos	,, ,, ,,	280 1,969		 24	17 3,495	1,297 			120,956 1,594 5,464 174
Asbestos Barytes	,, ,, ,,	280 1,969	 	24	17 3,495 692	1,297 150			1,594 5,464 174 692
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay	,, ,, ,, ,,	280 1,969 	 	 24	17 3,495	1,297 			120,956 1,594 5,464 174 692 8,827
Asbestos Barytes	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	280 1,969	 	 24	17 3,495 692 8,827	1,297 150 			120,956 1,594 5,464 174 692 8,827
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth	,, ,, ,, ,,	280 1,969 	 	24	17 3,495 692 8,827	1,297 150			120,956 1,594 5,464 174 692 8,827
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay . Fuller's Earth Kaolin	37 37 37 37 37 37 37	280 1,969 	 	 24 60	17 3,495 692 8,827	1,297 150 			120,956 1,594 5,464 174 692 8,827 119
Asbestos	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	280 1,969 119	 9,051	 24	3,495 692 8,827 2,858	1,297 150 	 7,316		120,956 1,594 5,464 174 692 8,827 119
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Diatomite);););););););	280 1,969 119	 	 24 60	17 3,495 692 8,827 2,858 32 29,300	1,297 150 80	7,316		120,956 1,594 5,464 174 692 8,827 119,365 962 39,347
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Diatomite Felspar);););););););););););	280 1,969 119 680	 9,051	24 60 85	17 3,495 692 8,827 2,858 32 29,300	1,297 150 80	7,316		120,956 1,59, 5,46 17, 692 8,827 119,365 19,365 39,344
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Distomite Felspar Graphite	31 37 37 37 32 33 33 33 33	280 1,969 680 2,752 7,248	 9,051	24 60 85	17 3,495 692 8,827 2,858 32 29,300 2,433 69	1,297 150 80 44 10,047 540	7,316	 	120,956 1,594 5,462 174 692 8,822 115 19,365 962 39,347 4,545 10,736
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Felspar Graphite Gypsum	31 37 37 32 32 32 33 33 33 34 35 37 37 37 37 37 37 37 37 37 37 37 37 37	280 1,969 119 680 2,752 7,248 82,653	9,051 854	 24 60 85	177 3,495 692 8,827 2,858 29,300 2,433 69 147,698	1,297 150 80	7,316	 	120,956 1,594 5,464 174 692 8,827 119,365 19,365 9,62 39,347 4,549 10,736
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Diatomite Felspar Graphite Gypsum Limestone Flux	32 32 32 32 32 33 33 33 32 32 32 32 32 3	280 1,969 680 2,752 7,248 25,82,653 58,782	9,051 854 30,985	24 60 85 403	17 3,495 692 8,827 2,858 32 29,300 2,433 69	1,297 150 80 44 10,047 540 1,049 	7,316	 	120,956 1,594 5,464 174 692 8,827 19,365 962 39,347 4,549 10,730 124 287,243 464,588
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Diatomite Felspar Graphite Gypsum Limestone Flux Magnesium—Dolomite	11 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	280 1,969 119 680 2,752 7,248 25 82,653 58,782 37,078	 9,051 854 30,985 3,952	24 60 403 25	17 3,495 692 8,827 2,858 32 29,300 2,433 69 147,698 379,854	1,297 150 80 44 10,047 540 1,049 25,907	7,316 21 5	 	120,956 1,594 5,466 174 692 8,822 115 19,365 39,347 4,545 10,736 122 287,243 464,588 (b) 37,128
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Diatomite Felspar Graphite Gypsum Limestone Flux Magnesitum—Dolomite Magnesite	11 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	280 1,969 680 	854 30,985 	24 60 85 403 25 (f)	177 3,495 692 8,827 2,858 29,300 2,433 69 147,698	1,297 	7,316 21 5	 	120,956 1,594 5,466 5,466 692 8,882; 119,365 19,365 39,347 4,545 10,736 122 87,224 464,588 (b) 37,128 33,599
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Diatomite Felspar Graphite Gypsum Limestone Flux Magnesium—Dolomite Mica	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	280 1,969 	 9,051 854 30,985 3,952	24 60 403 25	17 3,495 692 8,827 2,858 32 29,300 2,433 69 147,698 379,854	1,297 150 80 44 10,047 540 1,049 25,907	7,316 21 5	 	120,956 1,594 5,466 177 692 8,822 111 19,365 9962 39,344 4,549 10,736 122 287,244 464,588 (b) 37,128
Asbestos Barytes Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Diatomite Felspar Graphite Gypsum Limestone Flux Magnesium—Dolomite Mica Phosphates	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	280 1,969 680 	9,051 854 30,985 3,952	24 60 .85 403 25	177 3,495 692 8,827 2,858 32 29,300 2,433 699 147,698 379,854 	1,297 150 80 44 10,047 25,907 20,34 1,254	7,316 21 5	100 	120,956 1,596 1,796 8,822 111 19,36 39,34 4,544 4,544 (b) 37,122 287,244 (464,58) (b) 72,441
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Diatomite Felspar Graphite Gypsum Limestone Flux Magnesium—Dolomite Mica Phosphates Salt	"" "" "" "" "" "" "" "" "" "" "" "" ""	280 1,969 	 9,051 854 30,985 3,985 	24 60 .85 403 25 (f)	177 3,495 692 8,827 2858 32 29,300 433 69 147,698 379,854 168,450	1,297 150 80 44 10,047 540 1,049 25,907 50 2,034 1,254	7,316	100	120,95(1,594 5,46: 177. 692 111 19,365 962 44,544 45,458 (b) 37,121 28,724 464,588 (b) 72,444 (c) 72,441 (d) 168,455 (e) 168,455 (f) 168,455 (f) 168,455 (g) 168,455 (h) 168,455 (
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Diatomite Felspar Graphite Gypsum Limestone Flux Magnesium—Dolomite Mica Phosphates Salt Silica	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	280 1,969 	9,051 854 30,985 3,952	24 60 .85 403 25	177 3,495 692 8,827 2,858 32 29,300 2,433 699 147,698 379,854 	1,297 150 80 44 10,047 25,907 20,34 1,254	7,316 21 5	100 	120,956 1,594 5,464 174 692 8,827 119 19,365 962 39,347 4,549 10,730 124 287,224 37,128 3,590 (b) 72,447 (b) 168,450
Asbestos Barytes Clay(b)—Bentonitic Damourite Fireclay Fuller's Earth Kaolin Ochre and Pigments Other Diatomite Felspar Graphite Gypsum Limestone Flux Magnesium—Dolomite Mica Phosphates Salt	"" "" "" "" "" "" "" "" "" "" "" "" ""	280 1,969 	 9,051 854 30,985 3,985 	24 60 .85 403 25 (f)	177 3,495 692 8,827 2858 32 29,300 433 69 147,698 379,854 168,450	1,297 150 80 44 10,047 540 1,049 25,907 50 2,034 1,254	7,316	100	120,956 1,594 5,464 174 692 8,827 119 19,365 962 39,347 4,549 10,730 124 287,284 (b) 37,128 33,590

⁽a) Not available. (b) Incomplete. (c) Excludes cadmium and cobalt extracted in Tasmania from zinc ores and concentrates produced at Broken Hill. (d) The bulk of silver and lead is contained in the concentrates, etc., despatched from the Broken Hill field and treated outside the State. (e) Silver as a by-product from gold mining: see also Silver-lead Ores, Concentrates, etc. (f) Not reported.

The values of the minerals raised in each State in 1949 are shown in the following table:—

MINERAL PRODUCTION: VALUES, 1949.

			(20.)					
Mineral.	N.S.W.	Vic.	Q'land.	S. Aust.	W. Aust.	Tas.	N.T.	Australia.
Metallic-		·	 		ļ			
Antimony Ore and	[ĺ	[{	1 .
Concentrate	19,737	(a) 1,129		• •	954 983			25,859 (b) 983
Arsenic Oxide Bauxite	606	5,879	::		903	1 ::	::	(b) 983 6,485
Bismuth Concentrate	360		436] ;;		::	796
Cadmium	(c)					43,841		(b) 43,841
Copper—Ingot and]		ļ	_
Matte	433,363	• •	758,374	394		735,365		2,076,786
Ore Gold (d)	638,994	835,848	930,626	25,512	3,451 7,858,791	152,841	145,839 369,027	
Iron Ore	10,149		4,662	1,465,005	4,365	232,041	309,027	1,484,181
Lead	(e)		4,136,607	8,406		796,701		b 4,941,714
Manganese Ore	14,807		2,543	5,981	56,289		• • •	79,620
Molybdenite Concen-			7 500		J	j		
trate Pyritic Ore and Concen-	40	• •	1,527	••	• • • • • • • • • • • • • • • • • • • •		•••	1,567
trate	(a)		(a)		125,857	(a)		(b) 125,857
Silver	(e) 25,442	3,054		391	(f) 49,246			(b) 869,446
Silver-lead Ores, Con-	J		j	,	ļ	ļ	j	
centrate, etc	14,307,964	• • •		• • •	154,777	1	973	14,463,714
Tantalite Tin Concentrate	261,067	20,109	396,412		286 13,079	380,942	10,138	
Tungsten-Scheelite	201,007	20,109	390,412	• •	13,079	300,942	10,130	1,001,747
Concen-		j	1		1	ļ	,]
trate	2,028		700		219	272,668		275,615
Wolfram)	J		J)
Concen-			20 207			700 708		
trate Zinc and Concentrate	3,438,949		20,301	• • •	::	100,738 1,713,499	20,521	143,960 7,106,647
Zircon-Rutile-Ilmenite-	3,430,949		1,934,199			1,1 -3,499		7,100,047
Monazite Concen-								
trate	313,218		177,110		255			490,583
Other Metallic Minerals	170		385	70	1	124		2,246
Total, Metallic	19,469,294	866,019	8,971,996	1,505,759	8,270,049	4,403,957	546,738	44,033,812
Fuel								
Coal, Black—	ĺĺĺ		[.					ĺ
Semi-Anthracite and Bituminous	az6 zoz zz.	270 464	,	ſ		181,897	١ ,	
Sub-Bituminous	Ø16,121,554	379,404	}2,874,062	172.310	972,245	101,097	٠٠ }	20,701,541
Coal-Brown (includ-	1 1		١.	(-7-,5-)	37-,-43			
ing Lignite)	1 1	1,469,455		• •		• • •		1,469,455
Oil (Crude Petroleum)		1,004		• •				1,004
Shale (Oil) Other Fuel Minerals	181,437 206	• •	••• (• •	• •		• •	181,437 206
Total, Fuel		1,849,923	2 971 262			181,897		
Non-Metallic—	16,303,197	2,049,923	2,874,062	172,319	972,245	181,897		22,353,643
Asbestos	16,123			458	125,332			141,913
Barytes	4,164	!	[19,915	123,332			24,079
Clay(b)—Bentonitic	,		96		450			546
Damourite				2,993				2,993
Fireclay			• • •	5,520			• •	5,520
Fuller's Earth Kaolin	214	13,372	173	 4,994	160	24,621		214 43,320
Ochre and	١ ٠٠ ١	13,3/2	1/3	4,994	100	24,021		43,320
Pigments	1,171		556	50	3 66	67	501	2,711
Other				12,911	11,813	1		24,724
Diatomite	3,269	4,604	1,540		950			10,363
Felspar	17,148		148	7,350	3,934	10	• •	28,432
Graphite Gypsum	250	18,124		2,164 110,773	18,610	10	::	2,572 202,983
Limestone Flux	55,476 29,130	3,551	::	157,628	10,010	16,000		206,309
MagnesiumDolomite	25,696		(h)		248			(b) 25,944
Magnesite	60,287		1.7	1,853	4,714			66,854
Mica	2.1				1,343	• •	52,014	53,378
Opal Phosphates	1,592 28		1,200	39,798		•••	•••	42,590 28
Phosphates Salt	28	(h)	(h)	336,900	(\ddot{h})	- ::	:: [(b) 336,900
Silica	16,555		`'	13,267	1,014	2,219	::	33,055
Tale and Soapstone	ĺ		1	ĺ	1	. 1	j	
(Steatite)	5,866			44,333	2,375		'	52,574
Other Non-Metallic		1	اء ہ	3,878	40.75-	i	ł	7
Minerals	12,128		8,499		49,751		i	74,256
Total, Non-Metallic	249,118	39,651	12,212	764,785	221,060	42,917	52,515	1,382,258
Total, All Minerals	36,021,6091	2,755,593	,858,2701	2,442,863	9,403,354	4,028,771	_599,253	67,769,713
(a) Not available.	(b) Incomp	lata	(c) Exclude	e cadmiun	and cobs	It extract	ed in Tos	mania from

(a) Not available. (b) Incomplete. (c) Excludes cadmium and cobalt extracted in Tamania for me zinc ores and concentrates produced at Broken Hill. (d) Gold values calculated on current price of gold in Australian currency. (e) The bulk of silver and lead is contained in the concentrates, etc., despatched from the Broken Hill field and treated outside the State. (f) Silver as a by-product from gold mining: see also Silver-lead Ores, Concentrates, etc. (g) Includes small tonnage of sub-bituminous coal. (h) Not reported.

The figures in the foregoing table exclude certain materials, such as stone for building and industrial uses, sand, gravel, brick and pottery and other clays and limestone which usually are included under the generic term "mineral". Particulars of the production of some of these items are given in par. 6, Quarries, below. Items normally included in mine or quarry production by the Mines Departments of some States, such as cement, carbide and sulphuric acid, are omitted therefrom and included in manufacturing production. As far as possible, the mineral materials used in the manufacture of these products are included in mine or quarry production.

4. Value of Production, 1938, 1945 to 1949.—The values of the minerals produced in each State during the years 1938 and 1945 to 1949 are given in the table hereunder:—

MINERAL PRODUCTION: VALUES.

(£.)

Year	г.	n.s.w.	Victoria.	Q'land.	S. Aust.	W. Aust.	Tas.	N.T.	Australia.
1945 1946 1947 1948		10,786,157 16,879,131 20,327,962 26,264,688 36,350,972 36,021,609	1,884,015 1,830,374 2,079,353 2,206,628 2,346,855 2,755,593	3,966,119 4,355,127 4,761,403 8,545,299 9,211,588 11,858,270	2,932,473 2,309,991 2,776,145 3,209,382 3,260,309 2,442,863	8,561,269	1,889,804 1,934,066 2,855,674 4,224,756 4,366,730 4,628,771	214,724 176,197 166,543 229,437 294,078 599,253	32,517,761 33,289,124 40,553,787 53,542,467 64,391,801 67,769,713

The value of mineral production in Australia reached its highest level in 1949 at £67,769,713 compared with £64,391,803 in 1948 and £32,517,761 in 1938. Although this marked increase since 1938 was due to some extent to higher quantity output the main contributing factors were the increased prices paid in 1949 for coal, silver, lead and zinc.

Since 1938 the greatest increase has occurred in New South Wales, £25,235,452; followed by Queensland, £7,892,151; Tasmania, £2,738,967; Victoria, £871,578. Because of the reduced output of gold in Western Australia, the value of minerals produced in that State was £1,381,115 lower in 1949 than in 1938. The value of mineral output decreased in South Australia between 1938 and 1949 by £489,610.

5. Total Production to end of 1949.—In the next table will be found the estimated value of the total mineral production in each State up to the end of 1949. The items excluded from the preceding table are also omitted here, and consequently the total for New South Wales is considerably less than that published by the State Department of Mines. The principal items excluded from the table below are coke, cement, lime, marble, slate, granite, chert, gravels, etc., which the State Department now includes in the returns for quarries.

MINERAL PRODUCTION: VALUES TO END OF 1949.

Mineral.	N.S.W.	Victoria.	Q'land.	S. Aust.	W. Aust.	Tas.	N.T.	Australia
Gold Silver and	74,653	320,931	102,198	2,208	305,249	11,669	4,331	821,239
lead	219,088	290	27,211	405	3,025	15,885	70	265,974
Copper	18,968	217	36,284	33,314	1,827	32,249	414	123,273
Iron	9,452	. 16	546	39,218	43	97		49,372
Tin	20,230	1,313	14,754		1,733	22,183	732	60,935
Wolfram	436	19	1,551		7	1,240	863	4,116
Zinc	40,095		9,326	16	5	11,320		60,762
Coal	342,159	29,316	45,815	435	15,788	3,865		437,378
Other	12,440	1,157	3,660	17,914	2,482	3,979	453	42,085
Total	737,521	353,259	241,345	93,510	330,149	102,487	6,863	1,865,134

The "other" minerals in New South Wales include alunite, £234,000; antimony £479,000; arsenic, £212,000; bismuth, £264,000; chrome, £143,000; diamonds, £151,000; magnesite, £907,000; molybdenite, £232,000; opal, £1,646,000; scheelite, £264,000; and shale oil, £4,201,000. In the Victorian returns antimony ore was responsible for

£638,000. The value for coal in this State includes £10,230,000 for brown coal. Included in "other" in the Queensland production were opal, £190,000; gems, £662,000; bismuth, £147,000; cobalt, £158,000; molybdenite, £632,000; limestone flux, £903,000; and arsenic, £124,000. The chief items in South Australian "other" minerals were salt, £7,443,000; limestone flux, £1,247,000; gypsum, £2,038,000; phosphate, £196,000; and opal, £458,000. In Western Australia arsenic, £747,000; gypsum, £253,000; and asbestos, £432,000 were the principal items included with "other" minerals. In the Tasmanian returns osmiridium was responsible for £665,000, scheelite for £1,486,000 and limestone flux for £1,416,000.

6. Quarries.—Statistics giving details of the output of quarries were first published in Official Year Book No. 33, 1940. The details were collected following a resolution of the Conference of Australian Statisticians held in 1935.

The Conference decided that quarries, for the purpose of these statistics, should be confined to establishments in which four persons or more are employed, or in which power other than hand-power is used. The Conference, however, did not define the types of establishments which should be included as quarries, either according to the nature of the product or the method of obtaining the "mineral" material. Further difficulties have arisen owing to collection being made wholly or in part by Mines Departments in some States on bases inconsistent with those adopted by Statisticians. Consequently, the statistics which have been collected and reported as quarry production lack uniformity in many respects, while practices have varied considerably in classifying such materials as limestone and clays to mining or quarrying. The gathering of sand for various purposes has in general been omitted from quarry production.

The quarrying of limestone for use as a flux has for many years been included in "Mineral" production for all States (see para. 3 preceding). Limestone used for other purposes (cement, lime, chemicals, etc.) has been reported as quarry production but the figures are incomplete for most States. In 1949-50 limestone used by Australian factories for the manufacture of cement and lime and for general chemical purposes amounted to 1,939,449 tons, valued at £1,007,645.

The production of certain types of clays is included in "mineral" production, particulars being shown in the tables in para. 3 preceding. In addition, considerable quantities of clays are reported under quarry production, totals furnished for 1949 being as follows:—New South Wales, 1,251,606 tons, £289,927; Victoria, 81,336 tons, £32,468; Queensland, 109 tons, £652; South Australia, 251,333 tons, £58,765; Western Australia, 10,321 tons, £12,789; Tasmania, 7,337 tons, £24,688; Total, 1,602,042 tons, £419,289.

Particulars of the reported output of establishments engaged in the quarrying of building stone, macadam, ballast, etc. during 1949 (or other appropriate year) are shown in the table below.

BUILDING STONE, MACADAM, BALLAST, ETC., QUARRIED, 1949.

				-		
Particulars.	N.S.W.	Vic.(a)	Q'land. (b)	S. Aust.	W. Aust.	Total.(c)
		QUANTIT	y (Tons).			
Building Stone Macadam, Ballast, etc.	847,540 5,749,477	8,678 1,125,107	24,123 800,192	122,102 2,911,700	27,374 300,344	1,029,817
	I	Value	£.).		<u> </u>	
Building Stone Macadam, Ballast, etc.	489,953 1,734,819	33,666 610,856	10,780 248,966	85,742 728,287	29,551 195,355	649,692 3,518,283
(6)	1010-60	(c) Evel	udes Tooms	ola Northern	Territory of	nd Australian

⁽a) 1948-49. (b) 1949-50. (c) Excludes Tasmania, Northern Territory and Australian Capital Territory, particulars for which are not available.

§ 2. Gold.

- 1. Discovery in Various States.—The discovery of gold in payable quantities was an epoch-making event in Australian history, for, as one writer aptly phrases it, this event "precipitated Australia into nationhood". A more or less detailed account of the finding of gold in the various States appears under this section in Official Year Books, Nos. 1 to 4.
- 2. Production at Various Periods.—(i) Quantities. The following table shows the quantity of gold produced in the several States and in Australia as a whole during each of the nine decennial periods from 1851 to 1940, and in single years from 1941 to 1949. Owing to the defective information in the earlier years the figures fall considerably short of the actual totals, for during the first stages of mining development large quantities of gold were taken out of Australia by successful miners who preferred to keep the amount of their wealth secret.

GOLD: QUANTITY PRODUCED.

('000	fine	0z.)
-------	------	------

Period.	j	N.S.W.	Vic.	Q'land.	S. Aust.	W. Aust.	Tas.	N.T.	Australia.
1851-60		2,715	21,973	3			186		24,877
1861-70	!	3,220	15,327	489		. '	3	••	19,039
1871-80	• • •	2,019	9,564	2,527	136	1	165	19	14,430
r881-go		1,014	6,689	3.259	58	42	357	168	11,587
1891-1900		2,432	7,040	5,648	52	5,252	550	214	21,188
1901-10		2,253	7,095	5,512	73	17,784	604	111	33,432
1911-20	1	1,145	3,067	2,263	55	10,671	202	23	17,426
1921-30		204	593	434	10	4,557	43	2	5,843
1931-40		569	1,052	1,021	53	8,474	130	84	11,383
1941	!	88	150	109	2	1,109	20	19	1,497
1942		77	101	95	2	848	19	12	1,154
1943		64	56	63.	1	546	17	4	751
1944		63	54	5 r ·	1	466	17	5	657
1945		43	62	63	• •	469	13	7	657
1946	أ	32	87	62	1	617	15	10	824
1947	1	50	85	72 .	1	704	15	11	938
1948		52	60	70	2	665	13	15	886
1949		52	69	76	2	648	12	30	889
Total, 1851-	1949	16,092	73,133	21,817	449	52,852	2,381	734	167,458

The amount of gold raised in Australia in any one year attained its maximum in 1903, when Western Australia also reached its highest point. For the other States the years in which the greatest yields were obtained were as follows:—New South Wales, 1852; Victoria, 1856; Queensland, 1900; South Australia, 1904; and Tasmania, 1899.

Owing to the exhaustion of the more easily worked deposits and increased costs due to deep mining the production of gold in Australia declined from 3,837,979 fine oz. in 1903 to 427,160 fine oz. in 1929, the lowest output since the discovery of the precious metal.

Increased activity in prospecting due to prevailing economic conditions resulted in some improvement in 1930, but the marked development between that year and 1939 received its impetus from the heavy depreciation of Australian currency in terms of gold. Oversea and local capital were attracted to the industry, and the employment of advanced geological methods and technical improvements brought many difficult or

0

GOLD. 855

abandoned propositions into profit. The output of gold rose annually from 467,742 fine oz. in 1930 to 1,645,697 fine oz. in 1939. Following the outbreak of war in 1939, production fell very slightly in 1940, and rapidly thereafter, due to the diversion of manpower, until in 1944 it was only 656,867 fine oz. In 1945, the year in which hostilities in the 1939–45 War ceased, production showed practically no change, but in 1946 a marked increase of 167,267 fine oz. or 25 per cent. was recorded. A further increase occurred in 1947, but production fell in 1948 and remained at much the same level in 1949. Output in this year, 889,058 fine oz. was 35 per cent. higher than the war-time trough of 657,000 fine oz. in 1944 and 1945 but was 46 per cent. less than output in 1939.

(ii) Values. In the next table the gold produced since 1851 is valued in Australian currency. For the years 1851 to 1918 and 1925 to 1930 the price used was £4 4s. 11⁵/11d. per fine oz. For the years 1919 to 1924 the price ranged between £5 12s. 6d. in 1920 and £4 8s. 6d. in 1923. The value applied for 1931 and to June, 1932 was the export parity calculated directly from London prices. Since then the average price paid by the Australian branches of the Royal Mint has been used.

GOLD: VALUE OF PRODUCTION.

(£.)

Period.	n.s.w.	Victoria.	Q'land.	S. Aust.	W. Aust.	Tas.	N.T.	Australia.
1851-60	11,530,583					788,564		105,670,764
1861-70	13,676,103	65,106,264			• •	12,174		80,871,035
1871-80	8,576,654	40,625,188				700,048	79,022	61,293,028
1881-90	4,306,541	28,413,792	13,843,081	246,668	178,473	1,514,921	713,345	49,216,821
1891-1900	10,332,120	29,904,152	23,989,359	219,931	22,308,524			89,999,410
1901-10	9,569,492	30,136,686	23,412,395					142,009,109
1911-20	4,988,377	13,354,217	9,876,677	238,808	46,808,351		(a)100,652	76,240,384
1921-30	940,946	2,721,309	1,976,715	47,564	20,462,957	193,833	(b) 11,545	25,354,869
1931-40	5,115,397	9,444,570	9,118,903	459,330	74,391,204	1,164,492	786,790	100,480,686
1941	941,243	1,600,016	1,164,623	17,907	11,852,046	212,709	201,599	15,990,143
1942	807,436	1,060,910	994,214	13,931	8,865,632	191,835	126,035	
1943	666,491	590,540	656,657	5,424	5,710,664	180,210	40,880	
1944	657,161	568,305	538,177	5,661	4,899,129	174,889	57,804	
1945	461,304	661,430	676,712	2,970	5,009,548	139,573	76,811	7,028,348
1946	344,497	936,262	675,164	6,760	6,640,075	165,334	105,376	8,873,468
1947	539,008	911,681	777,924	6,770				
1948	561,415	738,100					163,482	
1949	638,994	835,848	930,626		7,842,604			
Total,	ļi		·					
1851-1949	74,653,762	320,946,322	102,204,899	2,208,296	305,242,107	11,670,106	4,331,787	821,257,279

⁽a) Period July, 1911 to June, 1920.

Values per fine oz. in Australian currency assigned to the production of gold during recent years are: £9 148. 5\frac{1}{2}d. in 1939, £10 138. 1\frac{1}{2}d. in 1940, £10 138. 8d. in 1941, £10 98.0\frac{1}{2}d. in 1942, £10 98. 0d. in 1943, £10 108. 1\frac{1}{2}d. in 1944, £10 138. 11\frac{1}{2}d. in 1945, and £10 158. 3d. in 1946, at which level it remained until 19th September, 1949. On that date, following the alteration in the rate of exchange, the value of gold rose to £15 98. 10d. per fine oz. in terms of Australian currency. Further information regarding the price of gold is given in Chapter XVI.—Private Finance.

3. Changes in Relative Positions of States as Gold Producers.—The figures in the table showing the quantity of gold raised explain the very large increase in the population of Victoria during the period 1851 to 1861, when an average of over 40,000 persons reached the State each year. With the exception of 1889, when its output was exceeded by that of Queensland, Victoria maintained its position as the chief gold producer for a period of forty-seven years, until its production was surpassed by that of Western

⁽b) Period July, 1920 to December, 1930.

Australia in 1898. From that year onward the proportion contributed by Western Australia has increased and in 1949 represented 73 per cent. of the entire yield of Australia. The proportion contributed by this State for the period 1851 to 1949 was 32 per cent, and by Victoria for the same period 43 per cent.

4. Place of Australia in the World's Gold Production.—The table below shows, in decennial periods from 1851 to 1940 and the quinquennium 1941-45, the world's gold production (as ascertained from authoritative sources) and the share of Australia therein. The details of world production shown for the years 1941 to 1945 are possibly less complete than those shown for other years, because of censorship during the war. The figures recorded for these years represent recorded production only and therefore omit any production for those countries not reporting. Included in this latter group are the Soviet Union and other producing countries of lesser importance.

				D. WORLD ING		
	Period.			World Production of Gold.	Gold Produced in Australia.	Proportion of Australian Produc- tion to Total.
				Fine oz.	Fine oz.	%_
1851-60				64,482,933	24,877,012	38.58
1861-70				61,098,343	19,038,661	31.16
1871-80				55,670,618	14,429,601	25.92
1881–90	• •	• •	•	51,280,184	11,586,625	22.59
1891-1900		••		101,647,521	21,187,662	20.84
1901-10]	182,891,525	33,432,069	18.28
1911-20			\	206,511,263	17,426,466	8.44
1921-30				183,805,900	5,843,052	3.18
1931-40				315,508,597	11,383,487	3.61
1941–45	••	• •		(a) 134,100,000	4,715,844	3.52
1946				21,600,000	824,480	3.82
1947				21,800,000	937,654	4.30
1948			[22,300,000	885,507	3.97
1040			'	30,107,000	889.058	2.05

GOLD: WORLD PRODUCTION.

The quantities of gold produced in the principal producing countries in each of the years 1938 and 1945 to 1949 are shown in the table hereunder.

GOLD: PRODUCTION IN PRINCIPAL COUNTRIES.
('000 fine oz.)

Country.	1938.	1945.	1946.	1947.	1948.	1949.
Union of South Africa	12,161	12,225	11,927	11,200	11,585	11,705
U.S.S.R. (Russia)	5,236	(a) 5,000	(a) 6,000	(a) 7,000	(a) 7,000	(a) 7,000
Canada	4,725	2,697	2,833	3,070	3,530	(b) 4,124
United States of		1			1	
America	4,245	997	1,625	2,321	. 2,099	1,996
Australia	1,592	657	824	938	886	889
British West Africa(c)	730	548	590	563	677	682
Rhodesia	815	568	552	523	514	528
Mexico	924	499	421	465	339	406
Colombia	521	507	437	383	335	359
Belgian Congo	394	347	331	301	300	334

⁽a) Estimated. Sierra Leone.

⁽a) Recorded production only. See letterpress above.

⁽b) Includes Newfoundland.

⁽c) Includes Gambia, Gold Coast, Nigeria,

Gold. 857

5. Employment in Gold-mining.—The number of persons employed in gold-mining in each State at various intervals since 1901 is shown in the following table. The figures include prospectors, etc., so far as data are ascertainable, and include those who may not have worked during the whole of the year.

Year.	N.S.W.	Victoria.	Q'land.	S. Aust.	W. Aust.	Tas.	Nor. Terr.	Total.
1901	12,064	27,387	9,438	(a)1,000	19,771	1,112	(a) 200	70,972
1903(b)	3,570	25,208	9,229 3,123	(a)1,000 800	20,716	973 481	(a) 200 175	68,573 33,525
1923	1,141	2,982	603	32	5,555	119	30	10,462
1933	6,913 3,764	6,126 6,315	4,161 3,378	231 158	9,900	229 141	95 267	27,655 29,397
1930	3,,,,4	0,313		1		-4-		~91397
1945	509	643	1,256	16	4,818	15	46	7,303
1946	772	1,282	1,651	38	6,961	13	106	10,823
1947	795	1,135	1,834	50	7,649	14	176	11,653
1948	702	1,064	1,627	34	7,178	15	171	10,791
1949	688	1,019	(c) 1,589	52	6,800	9	238	10,395

GOLD-MINING: PERSONS EMPLOYED.

Owing to the exhaustion of the more easily worked deposits and increased costs due to deep mining, the number employed in gold-mining had dwindled to the comparatively small figure of 6,108 in 1929. Stimulated by the enhanced price of gold, employment in the industry rose by almost five-fold to 33,113 in 1935, but thereafter the numbers employed declined each year to 7,015 in 1944. Following the cessation of hostilities and a relaxation of manpower control, the numbers rose in each succeeding year to 11,653 in 1947 but fell to 10,791 in 1948 and to 10,395 in 1949.

6. Tax on Gold.—(i) General. The Commonwealth Government imposed a tax on gold produced in Australia or in any Territory under its jurisdiction and delivered to the Commonwealth Bank on or after 15th September, 1939. The rate of tax was fixed at 50 per cent. of the price payable by the Bank in excess of £A.9 per fine oz.

The tax on gold yielded £1,214,621 during 1939-40; £1,452,260 during 1940-41; £1,030,425 in 1941-42; £524,694 in 1942-43; £317,720 in 1943-44; £342,457 in 1944-45; £383,552 in 1945-46; and £556,435 in 1946-47. This tax was suspended as from 20th September, 1947 by the Gold Tax Suspension Act 1947.

(ii) Development of Gold Mining Industry. Assistance amounting to £150,000 was given to the gold-mining industry, through the medium of the States, during 1940-41. In addition, an amount approximating £150,000 was paid during 1942 and subsequent years for the maintenance of those mines where, under manpower control, miners were transferred to other activities more directly associated with the war effort.

The suspension of the tax on gold referred to above was designed to assist the goldmining industry in meeting higher costs and to encourage greater output.

7. Bounty on Production.—A reference to the bounty provided by the Commonwealth on gold production in Australia appears in Official Year Book No. 32, p. 579.

⁽a) Estimated. copper-gold ore.

⁽b) Year of maximum production for Australia.

⁽c) Mainly mining for

§ 3. Silver, Lead and Zinc.

1. Production.—(i) General. The values of production of silver, silver-lead ores, concentrates, etc., zinc and concentrates, as reported by Mines Departments for each of the years 1938 and 1945 to 1949, are shown in the following table:—

SILVER, LEAD AND ZINC: VALUE OF PRODUCTION.

£.)

Year.	N.S.W.	Vic.	Q'land.	S. Aust.	W. Aust.	Tas.	Nor. Terr.	Australia.
- •	3,751,454 5,699,005 8,378,736 12,355,617 19,282,007 17:772,355	1,622 2,687 1,910 2,091	1,256,078 17,788 1,355,993 4,605,580 5,111,721 6,674,881	601 224 1,676 9,862	48,751 158,466		 1,407	5,661,951 6,408,640 11,109,509 19,139,346 26,900,715 27,381,130

(ii) New South Wales. By far the greater amount of silver-lead-zinc ore in New South Wales, in fact in Australia, is won from the massive silver-lead-zinc sulphide deposit at Broken Hill. Those concerned in operating this gigantic lode are North Broken Hill Limited (which mines the northern limb of the ore-bearing structure), Broken Hill South Ltd., and Zinc Corporation Ltd. with which is associated New Broken Hill Consolidated (which are conducting operations on the southern limb).

The oxidized lead ores were directly smelted at Broken Hill prior to 1897, when smelting operations were transferred to Port Pirie in South Australia. The present-day sulphide ores are concentrated by gravity and flotation methods at Broken Hill. The lead (galena) concentrates (averaging approximately 76 per cent. lead, 4 per cent. zinc, 30 oz. silver per ton, 9.0 grains of gold per ton, 0.22 per cent. antimony and 0.64 per cent. copper) are railed to Port Pirie, and smelted to produce lead bullion which is later refined by a continuous lead refining process for the elimination of arsenic and antimony and the recovery of silver and gold. A large proportion of the zinc concentrates produced at Broken Hill are roasted by fertilizer plants in South Australia for the recovery of sulphur dioxide for sulphuric acid manufacture, the calcines after roasting being sent to Risdon in Tasmania for refining. The balance of the concentrates is either exported overseas or sent to Risdon in Tasmania for roasting and refining.

At Captain's Flat, Lake George Mines Limited is operating a lode of similar constitution. Concentration of the ore is carried out at the mine itself, after which process individual concentrates of zinc and lead (containing silver) are despatched to Port Kembla, New South Wales, for further treatment. Copper, pyrites and gold are also produced at this mine.

Silver-lead-zinc ore has been mined in small quantities in various other parts of the State, the more important localities being Yerranderie, Howell and Kangiara.

Particulars of the New South Wales mine production of silver, lead and zinc, as reported by the Mines Department, are shown in the table below for the years 1938 and 1945 to 1949. The particulars shown for silver relate, in the main, to the silver content of copper concentrates. The greater part of silver of New South Wales origin is contained in the silver-lead ore and concentrates shown separately in the table. Further particulars of the production of silver, lead and zinc by the Broken Hill and Lake George Mines are given in par. 1 (ix) hereafter.

Despite some reduction in the output of silver-lead ore and concentrates and zinc concentrates since 1938, the reported value of New South Wales production of silver, lead and zinc rose from £3,751,454 in 1938 to £17,772,355 in 1949, because of substantial increases in prices for these metals, particularly export prices (see par. 5 hereafter).

			Silver	.(a)	Silver-lea Concen	d Ore and trates.	Zinc Co	Total	
	Year.		Quantity.	Value.	Quantity.	Value.	Quantity.	Value.	Value.
1938 1945 1946 1947 1948			Fine oz. 83,822 131,309 122,364 112,471 105,314	£ 7,357 20,703 28,297 26,242 24,573	228,590	£ 3,513,108 4,604,962 6,971,256 10,554,416 16,643,612	tons. 265,296 265,284 273,781 249,420 259,260	£ 230,989 1,073,340 1,379,183 1,774,959 2,613,822	£ 3,751,454 5,699,005 8,378,736 12,355,617 19,282,007
1949	••	• •	99,158	25,442	220,046		257,040	3,438,949	17,772,35

SILVER, LEAD AND ZINC: PRODUCTION, NEW SOUTH WALES.

(iii) Victoria. Small quantities of lead sulphide ore occur on most of Victoria's goldfields and in minor amounts in the Omeo, Bethanga and Cassilis districts. There has been no production of lead ore in recent years, the total recorded production being about 800 tons valued at £5,892.

The whole of the Victorian silver production of 12,316 fine oz. valued at £3,054 for 1949 was won as a by-product of the gold mining industry.

(iv) Queensland. In the far north-west of Queensland at Mt. Isa, some 600 miles west of Townsville, is operated the mining, milling and smelting enterprise of Mt. Isa Mines Ltd. Here, mining is carried out on extensive silver-lead-zinc ore lodes. After concentration by flotation in the concentrating mill, the silver-lead concentrate is converted to bullion in the smelter. All Mt. Isa bullion is exported overseas, where certain impurities, such as antimony, arsenic, and copper, as well as silver are removed to yield a pure lead suitable for commercial use.

Zinc concentrates and copper-lead dross produced by Mt. Isa are also exported overseas. During the 1939-45 War, operations on silver-lead-zinc ores at Mt. Isa were suspended while the mine was engaged in mining copper, but normal operations of the mine were resumed in 1946.

In 1949 approximately 87 per cent. of Queensland's production of both silver and lead and all the State's output of zinc were produced by the Mt. Isa mines.

The following table shows particulars of Queensland mine or smelter production of silver, lead and zinc, as reported by the Mines Department for the years 1938 and 1945 to 1949. The reduction in output in 1945 and 1946 was due to the suspension of silver; lead-zinc mining at Mt. Isa during the war. The lower output in 1949 compared with 1938 is more than offset by the higher prices received for these metals, the total value for the group having risen from £1,256,078 in 1938 to £6,674,881 in 1949.

	Year.		Silver	.(a)	Lead	1.(a)	Zino	Total	
			Quantity.	Value.	Quantity.	Value.	Quantity.	Value.	Value.
_	-		Fine oz.	£	Tons.	£	Tons.	£	£
1938	• •	• •	3,533,490	298,589	41,196	628,025	23,735	329,464	1,256,078
1945	• •		112,710	17,788					17,78
1946			980,538	209,094	12,754	627,775	11,361	519,124	1,355,99
1947			2,100,966	380,038	29,590	2,486,942	25,212	1,738,600	4,605,58
1948			2,306,869	422,015	30,779	3,002,381	21,593	1,687,325	5,111,72
1949			2,872,577	584,075	37,697	4,136,607	21,241	1,954,199	6,674,88

SILVER, LEAD AND ZINC: PRODUCTION, QUEENSLAND.

(a) Metal content of ores, concentrates and bullion produced.

⁽a) Mainly silver content of copper concentrates; most of the silver of New South Wales origin is contained in the silver-lead ore and concentrates shown in the next column.

(v) South Australia. Output of lead from local ores has been very small in recent years. In 1949, the lead content of concentrates produced amounted to 99 tons, valued at £3,406. Silver production was 1,749 fine oz., valued at £391, which was also contained in the above lead concentrates.

There has been no recorded zinc production since 1903, when the zinc was contained in lead ores and concentrates which came mainly from the Glen Osmond and Strathalbyn districts.

(vi) Western Australia. During 1949, a total of 2,922 tons of silver-lead-zinc ores and concentrates were exported from the State. These shipments contained 1,966 tons of lead, 35 tons of zinc and 9,992 fine oz. of silver. The value of the ores and concentrates was £154,777. The principal producer was the Prothero mine at Nabawa, while the Northampton Mineral Field also provided a large portion of the total ores and concentrates. Other centres of production are in the Naroo, Kooline, Wyloo and Napier Range areas.

In addition to the silver contained in the silver-lead-zinc ores and concentrates, 194,721 fine oz., valued at £49,246, was obtained as a by-product from the gold bullion despatched to the Perth Mint from the various goldfields.

Particulars of silver, lead and zinc production, as reported by the Mines Department of Western Australia for the years 1938 and 1945 to 1949, are shown below.

		Year.	Silver-lead-zi Concent		Silver in Go	ld Bullion.	Total	
		Year.	Quantity.	Value.	Quantity.	Value.	Value.	
			 Tons.	£	Fine oz.	£	£	
1938			 352	625	271,346	28,852	29,477	
1945			 1	• •	146,025	22,757	22,757	
1946			 36	1,068	171,452	42,792	43,860	
1947			 22	937	199,302	47,814	48,751	
1948			 2,192	114,268	187,818	44,198	158,466	
1949	• •	• •	 2,922	154,777	194,721	49,246	204,023	
			1 1					

SILVER, LEAD AND ZINC: PRODUCTION, WESTERN AUSTRALIA.

(vii) Tasmania. There are two large centres of silver-lead-zinc mining in Tasmania. The more important is the field operated by the Electrolytic Zinc Company of Australasia, Ltd. at Read-Rosebery. These are primarily zinc mines, although lead and copper-lead concentrates are also produced. This company also owns the electrolytic zinc works at Risdon near Hobart.

The lead concentrates and copper-lead concentrates produced at Rosebery are exported overseas.

The zinc concentrates, which are the principal product from the mine, also contain some lead. This concentrate is sent to Risdon for roasting and refining, portion of the resultant lead residue being sent to Port Pirie in South Australia for refining, the balance being dumped. In addition to the refining of zinc concentrates produced at Rosebery, the Risdon plant also treats considerable quantities of zinc concentrates from the Broken Hill mines.

Of secondary importance to Rosebery is the Mount Farrell field, situated 6 miles north-east of Rosebery. These ore-bodies are mainly silver-lead lodes which yield a lead concentrate with high silver content. The zinc content is insufficient to warrant recovery.

Most of the State's silver is contained in concentrates produced at Rosebery and Mount Farrell. Some silver is obtained from the Mount Lyell copper refinery tank house slimes which are treated at Port Kembla in New South Wales.

Particulars of Tasmanian mine production of silver, lead and zinc, as reported by the Department of Mines, are shown in the following table for the years 1938 and 1945 to 1949. As with New South Wales and Queensland, increased prices for these metals have resulted in a considerable rise in total values from £624,225 in 1938 to £2,717,438 in 1949.

SILVER, L	EAD AN	D ZINC:	PRODUCTION.	TASMANIA.
-----------	--------	---------	-------------	-----------

	Voor		Silver	:.(a)	Lead	.(a)	Zinc	Total	
Year.		Quantity.	Value.	Quantity.	Value.	Quantity.	Value.	Value.	
1938 1945 1946 1947 1948			Fine oz. 1,219,550 816,157 896,293 918,791 907,216 1,011,032	£ 104,671 102,101 187,428 169,068 168,726 207,238	Tons. 10,652 6,298 6,891 7,719 7,328 7,874	£ 163,102 157,459 340,509 660,861 697,194 796,701	Tons. 25,366 15,609 17,990 18,513 18,504 20,286	£ 356,452 407.307 800,072 1,295,883 1,469,241 1,713,499	£ 624,225 666,867 1,328,009 2,125,812 2,335,161 2,717,438

(a) Metal content of ores and concentrates of Tasmanian origin.

(viii) Northern Territory. During 1949, 23 tons of silver-lead ore, valued at £973, were mined. In 1948, 26 tons of ore, valued at £1,407, were raised. The output in each case came mainly from a few old mines in the northern part of the Territory, abandoned since the early days of mining. The principal centres are Boomlera, Mount Shoobridge, McArthur River and Jervois Range.

(ix) Australia. The table at the commencement of this section shows particulars for each State and for Australia as a whole of the total values ascribed to silver-lead-zinc mining by State Departments of Mines. Owing to lack of uniformity in the bases of reporting quantity output adopted by Mines Departments, data from those sources do not give a satisfactory picture of total output of the industry in Australia. A better indication is given in the following table, which shows the estimated silver, lead and zinc content of ores and concentrates produced in Australia according to data compiled by the Australian Mines and Metals Association. Comparable figures for 1938 are not available.

SILVER, LEAD AND ZINC CONTENTS OF ORES AND CONCENTRATES PRODUCED.

	Year.		Broken Hill, N.S.W.	Captain's Flat, N.S.W.	Mt. Isa, Q'land.	Rosebery, Tas.	Mt. Farrell, Tas.	Other.	Total, Australia.
				Si	LVER (fine	oz.).			·
1939			9,367,951	144,066	3,707,908	969.797		1,130.394	15,320,116
1945			6,004,172	137,543		681,905	136,390	1,116,730	8,076,740
1946			5,994,445	213,324	932,408	757,253	134,450	1,013,400	9,045,280
1947			5.429,536	171,063	2,069,273	768,419	140,585	948,264	9,527,140
1948			6,026,314	118,978	2,235,562	803,654	82,320	790.691	10,057,519
1949			5,792,157	71,371	2,485,473	916,530	77,300	506,382	9,849,213
1950	• •	• •	6,037,103	227,582	2,748,655	1,072,234	94,040	497,842	10,677,456
					LEAD (ton	s).		٠,	·
1939			215,198	7,919	43,955	9,104		3,827	280,003
1945			148,891	6,646	13,500	5,632	1,161	2,411	164,741
1946			152,407	9,041	12,288	6,249	1,167	2,683	183,835
1947			147,656	7,543	29,437		1,222	3,775	196,623
1948			164,645	5,518	30,165	7,001	765	8,861	216,95
1949			160,645	2,871	32,621	7,573	747	9,034	213,491
1950	• •	• •	156,842	9,137	37,021	8,579	894	6,703	219,170
			, <u> </u>		Zinc (tons	3).			·
1939			145,207	11,850	29,092	31,107		1	217,250
1945			118,566	11,893	-3,-3-	19,854		::	150,31
1946			122,776	15,187	11,269	22,678		1	171,91
1947			120,993	12,667	24,994	23,604		1	182,25
1948	••		136,144	9,445	21,578	23,151		151	190,46
1949			129,894	5,077	21,252	25,740		35	181,99
1950	• •		130,147	15,972	25,800	30,462		3	202,38

2. Production, Sales and Stocks of Refined Silver, Lead and Zinc.—In the following table, details are given of the quantities of refined silver, lead and zinc produced in Australia, and of the quantities sold and stocks held for the years 1939 and 1946 to 1950, according to data compiled by the Australian Mines and Metals Association. Comparable figures for 1938 are not available.

REFINED SILVER, LEAD AND ZINC: PRODUCTION, SALES AND STOCKS, AUSTRALIA.

	At	JSI KALIA	1.			
Particulars.	1939.	1946.	1947.	1948.	1949.	1950.
	SILVE	3 ('000 fin	e oz.)			
Stocks from previous year Production for year	9,552	465 6,183	241 6,658	445 6,212	284 5,573	633 6,653
Total Available Supply	9,674	6,648	6,899	6,657	5,857	7,286
Sold to Australian consumers Exported or sold for export Stocks on hand at end of year	1,794 7,518 362	6,407 241	3,561 2,893 445	1,375 4,998 284	1,019 4,205 633	1,095 5,744 447
Total Disposals and Stocks	9,674	6,648	6,899	6,657	5,857	7,286
	L	EAD (tons)	·			
Stocks from previous year Production for year	10,290	17,418 137,459	24,726 158,548	(a)5,028 159,497	5,861 151,753	8,635 161,572
Total Available Supply	209,727	154,877	183,274	164,525	157,614	170,207
Sold to Australian consumers Exported or sold for export Stocks on hand at end of year	32,217 164,684 12,826	42,040 88,111 24,726	33,242 138,378 11,654	34,774 123,890 (a)5,861	40,908 108,071 8,635	43,661 122,426 4,120
Total Disposals and Stocks	209,727	154,877	183,274	164,525	157,614	170,207
	Zı	NC (tons).		<u> </u>		<u> </u>
Stocks from previous year Production for year	3,225 71,220	4,786 76,316	531 69,421	3,685 81,312	5,879 80,956	4,581 83,652
Total Available Supply	74,445	81,102	69,952	84,997	86,835	88,233
Sold to Australian consumers Exported or sold for export Stocks on hand at end of year	31,088 43,137 220	35,984 44,587 531	47,442 18,825 3,685	42,018 37,100 5,879	44,024 38,230 4,581	45,141 38,558 4,534
Total Disposals and Stocks	74,445	81,102	69,952	84,997	86,835	88,233

⁽a) Prior to 1948 stock on hand represented physical stock; for the year 1948 this figure represents unsold stock.

3. World Production.—The estimated world production of silver, lead and zinc during the years 1938 and 1945 to 1949, as derived from statistics compiled by the American Bureau of Metal Statistics, is shown in the following tables.

SILVER, LEAD AND ZINC: WORLD PRODUCTION.

1938.	1945.(a)	1946.(a)	1947.(a)	1948.(a)	1949.(a)
		SILVER ('00	oo fine oz.).		
267,765	151,173	131,177	144,292	(b) 146,344	(b) 180,000
		LEAD (tons o	f 2,240 lb.).		
1,677,258	1,123,319	1,132,305	1,273,361	1,355,246	(b) 1,460,367
		ZINC (tons, o	f 2,240 lb.).		
1,920,000	1,525,006	1,549,508	1,671,007	1,767,809	(b) 1,818,879

4. Silver, Lead and Zinc Production in Principal Countries, 1949.—The following table shows particulars of silver, lead and zinc production (mine basis) in principal producing countries, according to data published by the American Bureau of Metal Statistics.

SILVER, LEAD AND ZINC: MINE PRODUCTION IN PRINCIPAL COUNTRIES, 1949.

Country.	Production.	Country.		Production
	SILVER ('0	oo fine oz.).		
Mexico United States of America Canada(a) British India (excluding Burma Peru	34,559 17,641 14,749 10,609 9,849 (b) 7,000	Bolivia Belgian Congo Japan Yugoslavia Argentina Union of South Africa Chile		6,623 4,549 3,591 (c) 2,500 1,249 1,159 800
(a) Includes Newfo		(b) Year 1940. (c) Year 1 of 2,240 lb.).	939.	
United States of America Mexico Australia Canada U.S.S.R. (Russia) Yugoslavia Peru Western Germany	229,987 213,491 142,656 (a) 88,600 71,071	French Morocco Italy South-West Africa Spain Bolivia Sweden Argentina		36,251 34,415 31,471 28,985 25,936 23,522 17,752

SILVER, LEAD AND ZINC: MINE PRODUCTION IN PRINCIPAL COUNTRIES, 1949—continued.

Country.	Production.	Country.			Production
	Zino (tons o	of 2,240 lb.).			
United States of America Canada	 529,645 257,377 188,554 181,988 (a)108,000 70,898 60,759 56,905	Belgian Congo Spain Japan Yugoslavia Sweden Rhodesia Bolivia			54,544 49,088 43,613 36,000 34,603 22,850 17,350

(a) Estimated.

5. Prices of Silver, Lead and Zinc.—In view of the close association in Australia, particularly in New South Wales, of ores containing these metals, relevant particulars of the prices of each of the metals have been included in the following table. The table shows average prices in Australia and on the London Metal Exchange during the years 1938 and 1946 to 1950. Lead and zinc prices have been controlled in the United Kingdom and Australia since the outbreak of war in 1939. Silver prices have not been controlled.

PRICES OF SILVER, LEAD AND ZINC.

(£ s. d.) 1948. Metal 1938. 1946. 1947. 1949. 1050. Australian Prices. Australian currency-Silver, per fine 6 oz.(a) ... Lead, per tonb 2.0 o 5 0.8 o 7.6 0 0 8.4 1.6 O 4 o 22 22 o 35 40 C22 22 0 Zinc, per tonb London Metal Exō o o 22 22 C22 change Prices, in sterling-Silver, per fine 9.06 6 8.4 9.0 0 0.2 5 8 3 95 80 Lead, per tonb 6 48 7 85 ıŏ 106 15 103 Zinc, per tonb 1 11 70 o O 87 110

(a) Silver prices have not been fixed by regulation in Australia, the prices shown representing export parity calculated from London Metal Exchange prices.

(b) Prices fixed by regulation.

(c) From February, 1940.

6. Employment in Silver, Lead and Zinc Mining.—The average number of persons employed in mining for these metals during each of the years 1938 and 1945 to 1949 is given below:—

SILVER, LEAD AND ZINC MINING: PERSONS EMPLOYED.

		, , ,	24.10	10 24110	111111111	1 21100		101401	
	Year.		n.s.w.	Q'land.	S. Aust.	W. Aust.	Tas.	Nor. Terr.	Australia.
1938		<u>-</u>	5,612	530		4	421	3	6,570
1945			3,929	34		7	417	1 "	4,380
1946			4,713	1,003	2	5	453		6,176
1947			5,331	994	12		523	2	6,862
1948			5,918	1,411	17	114	577.	6	8,043
1949	••	• •	6,052	1,285	32	135	616	6	8,126
				•	j	1		}	Į.

§ 4. Copper.

1. Production.—Copper is widely distributed throughout Australia. However, the principal producing States are at present Tasmania, Queensland and New South Wales, in that order.

The values of the local production, as reported and credited to the mineral industry for the years 1938 and 1945 to 1949, are shown hereunder. Quantities for Australia as a whole, as returned by the several State Mines Departments, are appended at the foot of the table:—

COPPER: PRODUCTION.

State.		1938.	1945.	1946.	1947.	1948.	1949.
New South Wales		£ 87,905	£ 305,000	£ 344,682	£ 290,905	£ 377,250	£ 433,363
Queensland South Australia Western Australia		203,967 15,333	1,500,662	648,122	338,508	475,548 502	75 ⁸ ,374 394
Tasmania Northern Territory	•••	1,275 580,238 4,362	364 463,294 3,811	716,212 6,282	6,071 1,057,825	881,363 7,370	3,451 735,365 145,839
Australia	••	893,080	2,284,805	1,715,403	1,693,309	1,742,292	2,076,786
Ingot, Matte, etc. Ore and Concentrate	es	Tons. 18,751 935	Tons.	Tons.	Tons. 14,040	Tons.	Tons. 17,405

Particulars of the copper content of ores and concentrates produced in each producing State and the Northern Territory, as published by the Australian Mines and Metals Association for the years 1938 and 1945 to 1949, are shown in the table below.

COPPER CONTENT OF ORES AND CONCENTRATES PRODUCED. (Tons).

State.	1938.	1945.	1946.	1947.	1948.	1949.
New South Wales Queensland South Australia Western Australia Tasmania Northern Territory	 1,963 4,458 254 5 12,729	1,830 15,007 134 12 7,472 65	1,768 6,481 1 9,380	2,391 2,778 7,954	2,515 3,149 4 6,574 126	2,453 4,924 3 5 5,229 848
Australia	 19,446	24,520	17,755	13,123	12,368	13,462

^{2.} Sources of Production.—(i) New South Wales. The copper content of ores and concentrates produced in New South Wales in 1949 amounted to 2,453 tons. The principal sources of this production were Broken Hill, New Occidental (Cobar) and Captain's Flat ores.

(ii) Queensland. In 1949 the yield of metallic copper in this State amounted to 4,924 tons compared with 3,149 tons in 1948 and 2,778 tons in 1947. The bulk of the production in 1949 came from Mt. Morgan (3,126 tons) while 1,588 tons represented the copper content of copper-lead dross from Mt. Isa Mines, treated overseas.

A copper mill and smelter is under construction at Mt. Isa for the purpose of operating on copper ores at that site. Copper was produced from copper ore at Mt. Isa during the 1939-45 War, but production was suspended in 1946 and operations since have been confined to silver-lead-zinc ores.

- (iii) South Australia. Deposits of copper are found over a large portion of South Australia, and its total production to date exceeds that of any other State, notwithtanding that output has diminished to negligible dimensions since the exhaustion of the ore reserves on the principal copper fields. No production was recorded in 1946 or 1947, while in 1948 and 1949 only 4 and 3 tons respectively, of metallic copper were produced.
- (iv) Western Australia. The ore sent to smelters in 1949 amounted to 49 tons containing 4.8 tons of metal, valued at £630. In the same year carbonate ores for use as fertilizers amounted to 254 tons, valued at £2,821.
- (v) Tasmania. The quantity of copper produced in Tasmania during 1949 was 5,229 tons, valued at £735,365, the Mount Lyell Mining and Railway Co. Ltd. accounting for the greater part of the production. Copper in concentrates produced by this company in 1949 was 7,940 tons, but much of this remained unsmelted at the end of the year. Output of cathode copper was 4,430 tons in 1949, while production of blister copper was seriously affected by shortage of smelting coke from Newcastle and Port Kembla during the coal strike.
- (vi) Northern Territory. Copper has been found at various places in the Territory. In 1947 there was no production, but during 1946 279 tons were produced compared with 96 tons in 1939. In 1948 and 1949 281 tons and 4,492 tons, respectively, of ore were mined. The large increase in 1949 was due to an active developmental programme carried out at Barrow Creek and Jervois Range.
- 3. Production, Sales and Stocks of Refined Copper.—In the following table, details of the production, sales and stocks of refined copper, as compiled by the Australian Mines and Metals Association, are given for the years indicated. Comparable figures for the year 1938 are not available.

REFINED COPPER: PRODUCTION, SALES AND STOCKS, AUSTRALIA. (Tons.)

Particulars.	1939.	1945.	1946.	1947.	1948.	1949.	1950.
Stocks from previous year Production for year	1,342 17,867	800 20,498	2,611 22,659	1,313	409 11,389	391 9,858	361 13,509
Total Available Supply	19,209	21,298	25,270	20,818	11,798	10,249	13,870
Sold to Australian consumers Exported or sold for export Stocks on hand at end of year	18,808 100 301	18,687 2,611	22,957 1,000 1,313	20,409 409	11,407	9,884 4 361	11,910 1,960
Total Disposals and Stocks	19,209	21,298	25,270	20,818	11,798	10,249	13,870

COPPER. 867

The particulars above relate to copper refined from Australian ores. In recent years, local demand for copper has considerably exceeded Australian production and substantial quantities of copper have been imported. A large proportion of the imports in 1947–48 and later years has comprised blister copper imported mainly from South Africa and refined in Australia. Recorded imports of "pigs, ingots and other refinery shapes" (mainly blister copper) in 1949–50 were 16,369 tons.

4. World Production of Copper.—The world's estimated production of copper during the years 1938 and 1946 to 1950 is shown below.

COPPER: WORLD PRODUCTION.

		(10113 01 2)	L 10 10./			,
1938.	1946.	1947.	1948.	1949.	1950.	
2,020,000	1,811,000	2,218,000	2,302,000	2,246,223	(a) 2,465,000	

(a) Subject to revision.

The yields in 1950 from the principal copper-producing countries reporting, as published in the Year Book of the American Bureau of Metal Statistics, were as follows:—

COPPER: PRODUCTION IN PRINCIPAL COUNTRIES, 1950.
(Tons of 2.240 lb.)

Count	Country.			oduction.		Production.			
United States of Chile	America	• • • • • • • • • • • • • • • • • • • •	(b)	817,362 357,024 280,883 233,852 214,000 173,140 58,273 39,400 38,701	Union of Cyprus Peru Cuba Finland Sweden Norway Australia		h Africa		32,900 28,468 27,412 20,235 16,958 15,845 15,156 14,905

(a) Includes Newfoundland.

(b) Estimated.

During 1950 the share of the United States of America in the world's copper production amounted to 41.2 per cent. while the Australian proportion was less than 1 per cent.

5. Prices.—Since the outbreak of war in 1939, the price of copper in Australia and the United Kingdom has been fixed by Regulation. Details of the average price for the years shown are given in terms of Australian currency and sterling in the following table:—

AVERAGE PRICE PER TON OF ELECTROLYTIC COPPER IN AUSTRALIA AND UNITED KINGDOM.

							(£ :	s. d	.)									
Country.		ceml 1939		,	946	•		1947		1	948			1949	•		1950	
Australia — in Aust. currencya	63	17	6	95	0	0	123	5	9	140		0	167	19	5	189	I	8
United Kingdom —in Sterling	62	0	0	77	4	0	130	12	4	134	0	0	133	1	11	178	17	I

(a) Ex works Port Kembla.

6. Employment in Copper-mining.—The number of persons employed in copper-mining, as recorded by Mines Departments for each of the years 1938 and 1945 to 1949, was as follows:—

COPPER-MINING: PERSONS EMPLOYED.

	Year.	N.S.W.	Q'land.	S. Aust.	W. Aust.	Tas.	Nor. Terr.	Australia.
1938 1945 1946 1947 1948 1949		 13 145 134 184 187	213 814 59 48 45	67 3 11 	4 2 1 2	1,015 738 709 733 746 757	5 5 9 15 13 3 ²	1,317 1,707 923 982 1,002

In 1917 over 9,000 persons were engaged in copper-mining.

§ 5. Tin.

1. Production.—The values of the production of tin, as reported to the Mines Departments in producing States during the years 1938 and 1945 to 1949, are shown in the following table. A separate line is appended showing the production of refined tin from ores and concentrates smelted, as recorded by the Australian Mines and Metals Association for the years indicated.

TIN: PRODUCTION.

State.		1938.	1945.	1946.	1947.	1948.	1949.
New South Wales Victoria Queensland Western Australia Tasmania Northern Territory	:::::::::::::::::::::::::::::::::::::::	£ 286,768 28,650 141,547 7,421 244,037 3,205	£ 291,788 9,869 207,948 4,370 240,369 5,026	£ 257,153 14,917 220,901 5,838 240,584 3,228	£ 246,423 25,397 390,833 5,565 353,045 4,698	£ 302,045 20,695 224,579 12,985 427,372 12,055	£ 261,067 20,109 396,412 13,079 380,942 10,138
Total		711,628		742,621	1,025,961	999,731	1,081,747
Refined Tin		Tons. 3,229	Tons, 2,359	Tons. 2,225	Tons. 2,371	Tons. 1,885	Tons. 1,955

^{2.} Sources of Production.—(i) New South Wales. Production of tin concentrates in 1949 was stated at 616 tons, valued at £261,067, compared with 760 tons, valued at £302,045 in 1948. A large proportion of the output in this State is obtained in normal years by dredging and sluicing, principally in the New England district.

⁽ii) *Victoria*. The production of tin in this State is obtained solely as a by-product from the gold dredging operations at Eldorado. The production in 1949 amounted to 49 tons of concentrates, valued at £20,109, compared with 54 tons, valued at £20,695, in 1948.

- (iii) Queensland. The chief producing districts in Queensland during 1949 were Herberton, 923 tons of concentrates; Cooktown, 37 tons; Stanthorpe, 33 tons; Chillagoe, 20 tons; and Kangaroo Hills, 33 tons. The total production in 1949 amounted to 1,051 tons, valued at £396,412, compared with 683 tons, valued at £224,579, in 1948. It is interesting to compare these production figures with those recorded in the early years of this century in this State when the output ranged between 2,000 and 5,000 tons per annum.
- (iv) Western Australia. The quantity of tin concentrates reported in this State in 1949 amounted to 35 tons, valued at £13,079, and was obtained mainly in the Pilbara and Greenbushes fields.
- (v) Tasmania. For 1949 the output amounted to 883 tons of tin concentrates, valued at £380,942, a decrease of 146 tons on the output of the previous year.
- (vi) Northern Territory. The production for 1949 amounted to 27 tons of concentrates, valued at £10,138, compared with 33 tons of concentrates valued at £12,055 produced during 1948.
- 3. World Production.—The world's production of tin ore, in terms of metal, during each of the years 1938 and 1944 to 1949 was as follows:—

TIN: WORLD PRODUCTION.(a)
(Tons of 2,240 lb.)

1938.	1944.	1945.	1946.	1947.	1948.	1949.
148,649	99,700	87,700	88,800	112,200	151,600	162,000

(a) As reported by the International Tin Study Group and United States of America Bureau of Mines.

The production of tin reached its maximum in 1941 when 241,400 tons were recorded. The following are the chief producing countries of the world:—Malayan Union, Bolivia, Indonesia, Belgian Congo and Nigeria. Normally these countries produce about three-quarters of the total production.

The production of tin ore, in terms of metal, for the principal producing countries in 1949 were as follows:—

TIN: PRODUCTION IN PRINCIPAL COUNTRIES, 1949.

(Tons of 2,240 lb.)

Country.			Production.	Country.	Production.
Malayan Union Bolivia Indonesia Belgian Congo Nigeria Thailand (Siam) China		::::::	54,910 34,123 28,965 13,539 8,823 7,817 4,200	Australia Burma Portugal United Kingdom Union of South Africa Mexico Spain	 1,955 1,906 1,400 1,217 465 309 300

Australia's share of the world's tin production in 1949 was about 1.2 per cent.

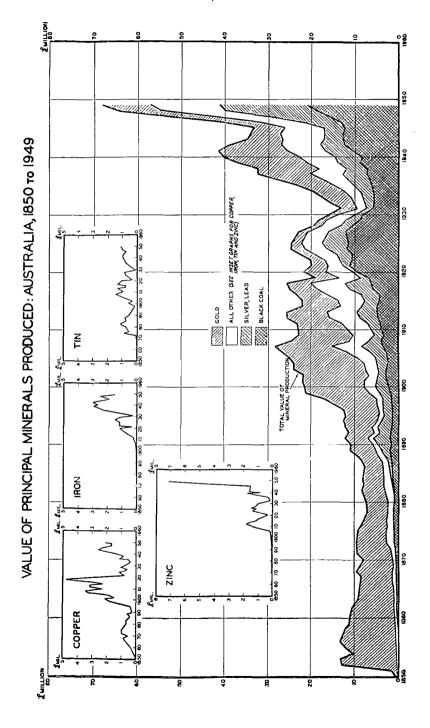
4. Prices.—At the outbreak of war in September, 1939, the price of tin in Australia and London was fixed by Regulation. London control of tin prices ceased on 14th November, 1949, while the Australian price is still controlled. Details of the movement in average prices for the years shown are given in terms of Australian currency and sterling in the following table:—

AVERAGE PRICE PER TON OF TIN IN AUSTRALIA AND UNITED KINGDOM.

(£ s. d.) December. Country. 1946. 1947. 1948. 1949. 1950. 1939. Australia-in 376 o 438 15 Aust. currency a299 620 0 O 0 577 7 n 725 United Kingdom 0;6336 —in sterling.. |b271 2 10 6425 18 7 6548 1 11,6599 16

5. Employment in Tin-mining.—The number of persons employed in tin-mining during the years 1938 and 1945 to 1949 was as follows:—

TIN-MINING: PERSONS EMPLOYED.


	Year.		N.S.W.	Victoria.	Q'land.	W. Aust.	Tas.	Nor. Terr.	Australla.
1938			1,440	5	1,263	73	1,123	15	3,919
1945		• •	814	4	465	13	736	(b) 48	2,080
1946			778		462	10	695	49	1,994
1947			523		528	9	627	52	1,739
1948			534		480	11	577	63	1,665
1949	• •		548	[]	515	24	576	82	1,745

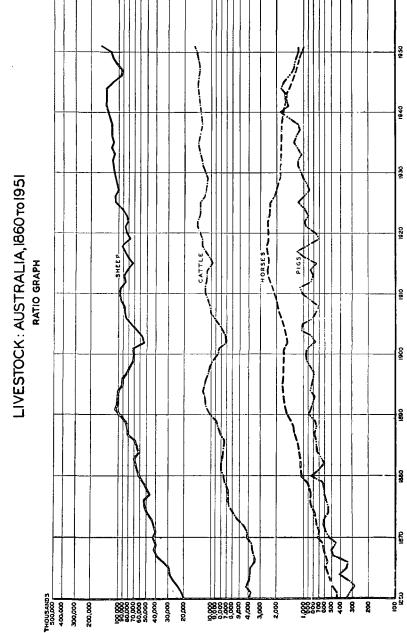
⁽a) The tin produced in Victoria was raised by a dredging company operating primarily for gold.(b) Includes some engaged in mining for tantalite.

§ 6. Iron.

- 1. General.—Although iron ore is widely distributed throughout Australia, the only known ore bodies of large extent and high grade which are easy of access are those situated at Iron Knob, South Australia and at Yampi Sound, Western Australia. Estimates of the reserves at these centres place the quantities available at approximately 150 million tons and 100 million tons respectively. Bearing in mind the expansion of the iron industry in Australia, and the limitations of these reserves, the Commonwealth Government prohibited the export of iron ore from 1st July, 1938. A survey of the iron ore resources of Australia undertaken by the Commonwealth Geologist was completed at the end of 1940.
- 2. Production.—(i) New South Wales. The production in 1935 of pig-iron from ores mined in New South Wales amounted to 4,580 tons, valued at £18,320. No iron ores were produced from 1935 until 1941, when 202,180 tons of ore were mined. In 1942, 375,297 tons were mined, but only 86,185 tons in 1945. Since that year there has been no iron-ore mined in this State for conversion into pig-iron. For many years the chief source of supply has been South Australia.

⁽a) Ex smelters for sales of 10 cwt. or more or in ingots of 70 lb. or more. (b) Average official prices for standard tin. (c) Tin, standard, spot.

2000


555555 5 5 8 8

00

THOUSANDS 500,000 400,000

200,000

30,000

MOTE:- VERTICAL SCALE IS **LOGARITHIN**C, AND THE CURVES RISE AND FALL ACCORDING TO RATE OF WREASE OR DECREASE, ACTUAL NUMBERS ARE INDICATED BY SCALE.

Iron. 873

Small quantities of iron oxide produced in New South Wales are used by the various gas-works for purifying gas, and also in the manufacture of paper, and for pigments. These supplies are drawn chiefly from the deposits in the Port Macquarie Division. During 1949, 10,313 tons of oxide, valued at £10,149, were won.

- (ii) Queensland. Extensive deposits of iron ore are known to exist in Queensland. Their location and size, however, in comparison with the more favourable deposits of South Australia and Western Australia, preclude their exploitation. The output of 2,101 tons, valued at £4,662, for 1949 came mainly from the Biggenden district.
- (iii) South Australia. The production from the deposits worked by the Broken Hill Pty. Co. Ltd. at Iron Knob reached its maximum in 1939, when 2,571,759 tons of ore, valued at £2,957,523, were raised. The production of 1,447,731 tons, valued at £1,465,005, for 1949 was below normal post-war output. This decrease was caused by an industrial dispute in South Australia followed by a coal strike in New South Wales in the same year.
- (iv) Western Australia. The development of the deposits at Yampi Sound was discontinued in 1938 as a result of the embargo on exports. However, in 1942, production of iron ore was reported for the first time since 1938; it amounted to 150 tons, valued at £225. Production in 1943 amounted to 84 tons, valued at £128, but up to 1947 no further production had been recorded.

Developmental work at the iron ore deposits on Cockatoo Island in Yampi Sound reached a climax on 24th July, 1951, when one specially designed vessel of the Broken Hill Proprietary Co. Ltd. left the island with 10,384 tons of ore for Port Kembla, New South Wales.

The production of pig-iron was commenced at Wundowie in Western Australia in January, 1948 under the direction of the State Department of Industrial Development. The ore used is obtained from the local deposits and converted to pig-iron by the use of charcoal burnt from timber obtained in the same locality. The production, which amounted to 771 tons for the six months ended June, 1948, had grown to 7,727 tons of pig iron for the year 1950. This, in addition to meeting local requirements, provided a small quantity for export to the eastern States.

The whole iron pyrites production of Western Australia is won at the Iron King and Norseman mines and is railed, in the form of ores and concentrates, to superphosphate manufacturers at Bassendean and Bayswater on the coast.

(v) Tasmania. There has been no production of ironstone in Tasmania since 1943 when 7 tons, valued at £14 were produced. The production of pyrites, which in 1950-51 amounted to 55,604 tons, valued at £111,549, is not included in the mineral returns, but is credited to the manufacturing industry, as it is a by-product from the flotation of copper ore at Mount Lyell. This product is exported to the mainland, where the sulphur contents have displaced imported sulphur in the manufacture of chemical fertilizers.

Reference to the iron ore deposits in the various States appears in preceding issues of the Official Year Book (see No. 22, pp. 777-9).

- 3. Iron and Steel Bounties.—During 1948-49 the bounties paid under the Bounties Acts on articles manufactured from locally produced materials were as follows:—Wirenetting, nil; traction engines, £37,146. Corresponding amounts paid during 1947-48 were £321 and £19,978 respectively.
- 4. Production of Iron and Steel in Principal Countries.—(i) General. Particulars of the production in the principal countries during the years 1938, 1948 and 1949, according to figures published by the Imperial Institute and the Statistical Office of the United Nations, are shown in the next table.

PIG-IRON	AND	STEEL:	PRODUCTION	IN	PRINCIPAL	COUNTRIES.
		('	000 Tons of 2,24	0 16) .)	•

	Pig-iro	n and Ferro	-alloys.	Steel I	ngots and Ca	etingo.
Country.	1938.	1948.	1949.	1938.	1948.	1949.
United States America U.S.S.R. (Russia) United Kingdom France Germany Belgium Japan Canada Czechoslovakia Poland Luxemburg Italy India Sweden Australia (c) Austria Spain Union of South Africa Hungary Brazil Mexico	2,388 2,535 761 1,215 948 1,526 914 1,571 701 930 542 433 290 330	54,312 (a) 9,269 6,459 (b) 4,593 3,861 827 2,102 (a) (a) 2,586 517 1,464 780 1,236 604 528 641 (a) 543	48,385 (a) 9,493 8,206 (b) 7,025 3,684 1,582 2,113 (a) (a) 2,338 438 1,606 827 1,045 824 619 697 (a) 491	22,268 2,243 6,367 1,155 1,710 1,527 1,514 2,271 936 663 567 341 638	79,120 (a) 14,877 7,120 (b) 5,467 3,849 1,688 2,857 (a) 1,925 2,409 2,890 1,252 1,240 1,382 638 614 590 (a) 476 264	69,603 (a) 15,562 9,009 (b) 9,009 3,778 3,058 2,846 (a) 2,267 2,232 2,019 1,358 1,346 1,214 822 708 626 (a) 599
Total—All Countries	81,000	(d)90,605	(d)89,720	107,600	(d)128,622	(d)126,339

⁽a) Not available.

The principal producers in Australia are the Broken Hill Pty. Co. Ltd. and the Australian Iron and Steel Ltd., both in New South Wales, the former situated at Newcastle and the latter at Port Kembla. The Broken Hill Pty. Co. Ltd. established a blast furnace at Whyalla in South Australia; this was blown in during May, 1941, and has since continued to operate except for the periods May, 1944 to April, 1946 and April, 1949 to September, 1949.

In Western Australia, the production of pig-iron, under the direction of the State Department of Industrial Development, commenced in January, 1948. The output for the year 1950 amounted to 7,727 tons.

(ii) Australia. The production of steel and pig-iron in Australia, of which New South Wales is the main producing State, is shown in the following table for each of the years 1940-41 to 1949-50 inclusive.

PIG-IRON AND STEEL: AUSTRALIAN PRODUCTION. (Tons.)

Year.	Pig-iron.	Steel Ingots.	Blooms and Billets.	Year.	Pig-iron.	Steel Ingots.	Blooms and Billets.
1940-41 1941-42 1942-43 1943-44 1944-45	1,557,641 1,399,306 1,305,357	1,632,825 1,527,564	1,631,679 1,699,447 1,583,417 1,393,919 1,236,528	1947–48 1948–49	1,143,132 1,235,574 1,044,957	1,343,153 1,178,010	1,036,501 1,255,703 1,221,938 1,101,063 1,103,619

⁽b) Western Germany.

⁽c) Year ended 30th June. (

⁽d) Incomplete.

§ 7. Other Metallic Minerals.

1. Tungsten.—Tungsten ores occur in all States, and on King Island in Bass Strait. Particulars of the King Island scheelite concentrates are included with Tasmanian production. Important deposits of tungsten ores occur in Queensland, New South Wales, Tasmania and Northern Territory, but production from the other States has been comparatively unimportant. Queensland has the largest total output to date, but its annual production is now much less than formerly. In recent years the largest production has come from Tasmania, followed by Northern Territory. Production during 1938 and the five years 1945 to 1949 is shown in the following table:—

TUNGSTEN CONCENTRATES: PRODUCTION.

Particulars.

Australia ...

		Wolfra	M Concer	TRATES.	,		
New South Wales	ewt. £	1,877	620 9,604	240	460	500	140
Queensland	cwt. £	25,740 3,015 30,779	2,599 48,176	3,859 1,295 20,773	9,184 1,261 28,283	9,175 1,957 47,351	2,400 988 20,301
Tasmania	owt. £	5,982 63,348	4,220 69,896	3,140 44,553	4,020 82,928	2,680	5,280
Northern Territory	ewt. £	8,694 78,277	2,540 42,937	1,455 21,696	2,020 41,020	1,420 30,780	1,096 20,521

SCHEELITE CONCENTRATES.

9,979

170,613

6,130

90,881

7,761

161,415

6,557

190,499

7,504

143,960

19,568

198,144

cwt.

			·	,			
New South Wales	cwt.	184	340	440	300	140	80
	£	2,472	7,111	8,680	6,847	3,408	2,028
Queensland	cwt.	13	101	9	156	2	34
•	£	93	2,018	98	3,166	38	700
Western Australia	owt.		16	100	120	145	12
	£	١	8,946	1,552	3,840	3,913	219
Tasmania	cwt.	611	10,560	12,560	12,620	12,740	16,060
	£	6,193	158,093	165,264	240,006	254,517	272,668
				ļ		<u> </u>	
Australia	ewt.	808	11,017	13,109	13,196	13,027	16,186
	£	8,758	176,168	175,594	253,859	261,876	275,615
			}	ļ	}	1	J

2. Cadmium and Cobalt.—Production of cadmium metal began in Australia in 1922 when the electrolytic zinc works at Risdon, Tasmania, came into operation. In Australia, cadmium is produced as a by-product in the treatment of lead and zinc concentrates from ores mined at Broken Hill in New South Wales and Read-Rosebery in Tasmania. In 1938, which is the last year for which relatively complete world production figures are available, Australia produced 196 tons of cadmium, amounting to about five per cent. of the world output.

Cobalt as cobalt oxide is recovered from the treatment of silver-lead-zinc concentrates of Broken Hill and Tasmanian origin in the same way as is cadmium. The production of cobalt and cadmium is shown for the years 1938 and 1945 to 1949 in the following table:—

CADMIUM AND COBALT OXIDE: PRODUCTION.

			Cadm	ium.		Cobalt Oxide.				
	Year.	Extracte	d in Tasmar in-		res mined	Extracted in Tasmania from Ores mined in—				
2		New South Wales.	Tas- mania.	Total.		New South Wales.	Tas- mania.	Total.		
1938 1945 1946 1947 1948		Cwt. 2,943 3,818 3,737 3,076 3,724 3,426	Cwt. 980 588 675 691 880 880	Cwt. 3,923 4,406 4,412 3,767 4,604 4,306	£ 79,406 98,671 98,823 84,335 103,145 248,653	Cwt. 377 274 305 239 300 280	Cwt. 12 5 4 4 5 5	Cwt. 389 279 309 243 305 285	£ 8,084 6,427 7,106 5,102 11,183 11,780	

The figures shown above do not include the metallic contents of cadmium and cobalt oxide contained in the ores and concentrates exported overseas.

- 3. Platinoid Metals.—(i) Platinum. (a) New South Wales. The deposits worked in the State are situated in the Fifield division, near Parkes, and in the Ballina division. The production in 1945 from all divisions amounted to 2 oz., valued at £22. The total production recorded to the end of 1945 amounted to 20,555 oz., valued at £130,667. There has been no production in New South Wales since that year.
- (b) Victoria. In Gippsland the metal has been found in association with copper and 127 oz. were produced in 1913, but there has been no production in recent years.
- (c) Queensland. Platinum, associated with osmiridium, has been found in the beach sands between Southport and Currumbin, in creeks on the Russell gold-field near Innisfail, and in alluvial deposits on the Gympie gold-field, but no production has been recorded.
- (ii) Osmium, Iridium, etc. (a) New South Wales. Small quantities of osmium, iridium and rhodium are found in various localities. Platinum, associated with iridium and osmium, has been found in the washings from the Aberfoil River about 15 miles from Oban, on the beach sands of the northern coast, in the gem sands at Bingara, Mudgee, Bathurst and other places. In some cases, as for example in the beach sands of Ballina, the osmiridium and other platinoid metals amount to as much as 40 per cent. of the platinum, or about 28 per cent. of the whole metallic content. There has been no production in recent years.
- (b) Victoria. In Victoria, iridosmine has been found near Foster, and at Waratah Range, South Gippsland.
- (c) Tasmania. The yield of osmiridium was returned as 99 oz. in 1947, valued at £2,700, compared with the record production in 1925 of 3,365 oz., valued at £103,570. The decrease in later years was largely due to the decline in price from £31 per oz. in 1925 to £15 os. 4d. per oz. in 1938 (although the price rose to £24 19s. 1d. per oz. in 1940 and reached £27 5s. 5d. in 1947), but the depletion of the known alluvial deposits was also a factor. However, 92 oz., valued at £2,094, was produced in 1948, while in 1949 production dropped to 39 oz., valued at £1,136.
- 4. Other.—Metallic minerals other than those mentioned above, but which are worthy of note are (with particulars of 1949 production shown in brackets):—Antimony (393 tons of ore and concentrates valued at £25,859); Arsenic (33 tons of oxide valued at £983); Bismuth (28 cwt. of concentrates valued at £796); Manganese (13,089 tons of ore valued at £79,620); and Molybdenum (118 cwt. of concentrates valued at £1,567).

§ 8. Coal.

1. Production in each State.—An account of the discovery of coal in each State appears in preceding issues of the Official Year Book (see No. 3, pp. 515-16). The quantity and value of the production in each State and in Australia during 1915, 1925, 1935, 1938, and for each of the years 1945 to 1950 are shown in the following table:—

BLACK COAL: PRODUCTION.

Yes	ar.	N.S.W.	Victoria.(a)	Q'land.	S. Aust.	W. Aust.	Tasmania.	Australia.
				QUANTITY	(tons).			
1915		9,449,008	588,104	1,024,273	1	286,666	64,536	11,412,58
1925		11,396,199	534,246	1,177,173		437,461	81,698	13,626,77
935		8,698,579	476,495	1,051,978	• •	537,188	123,714	10,887,95
1938		9,570,930	307,258	1,113,426		604,792	83 , 753	11,680,15
1945	• •	10,176,254	247,297	1,634,746	41,452	543,363	149,077	12,792,18
1946		11,186,383	191,290	1,567,520	135,460	642,287	158,751	13,881,69
1947		11,683,123	173,683	1,883,414	193,351	730,506	167,140	14,831,21
1948		11,721,446	164,906	1,742,396	239,464	732,938	179,393	14,780,54
1949		10,736,098	122,507	1,970,388	344,638	750,594	181,618	14,105,84
1950	••	12,798,221	126,431	2,320,799	261,337	814,352	222,351	16,543,49
				VALUE.	b) (£.)		<u> </u>	
1915		3,424,630	274,770	409,342		137,859	30,418	4,277,01
1925		9,302,515	596,117	1,037,956	1	363,203	70,424	11,370,21
1935		4,887,341	282,253	843,034		318,013	86,204	6,416,84
1938		5,652,964	188,101	958,884		375,083	61,991	7,237,02
945		9,451,930	494,690	1,759,311	14,508	572,896	125,719	12,419,05
1946		10,534,914	392,812	1,692,272	47,411	730,104	137,736	13,535,24
1947		12,101,178	299,784	2,237,738	67,777	840,249	154,725	15,701,45
1948		14,938,182	347,687	2,347,065	119,732	880,236	177,652	18,810,55
1949		16,121,554	379,464	2,874,062	172,319	972,245	181,897	20,701,54
1950	• •	22,121,326	382,230	3,562,541	130,669	1,185,038	231,599	27,613,40
		(a) Evaludes	brown coal s	houn in next	toble	(h) At the	nit's mouth	

⁽a) Excludes brown coal, shown in next table.

The figures for Victoria already quoted exclude the quantities and values of brown coal which were as follows:—

BROWN COAL: PRODUCTION IN VICTORIA.

	Year.	Quantity.	Value.(a)		Year.	 Quantity.	Value.(a)
1915 1925 1935 1938 1945		 Tons. 2,864 876,468 2,221,515 3,675,450 5,445,108	£ 573 166,404 317,444 351,721 641,069	1946 1947 1948 1949 1950		 Tons. 5,707,039 6,140,140 6,692,291 7,375,559 7,327,119	£ 706,504 937,429 1,187,715 1,469,455 1,706,612

⁽a) Cost of production.

2. Distribution and Production of Coal in each State.—(i) New South Wales. The coal deposits of New South Wales are the most important and extensively worked in Australia. The principal fields are known as the Northern, Southern and Western, and are situated in the vicinity of Newcastle, Bulli and Lithgow respectively.

⁽b) At the pit's mouth.

The coal from the various districts differs in quality or, geologically speaking, rank—that from the Northern district being especially suitable for gas-making, household purposes and steam, while the product of the Southern and Western districts is essentially a steaming coal. The Permian Coal Measures in the Northern district are being worked extensively in the Hunter River Valley area, particularly in the vicinity of Maitland, Cessnock and, more recently, Muswellbrook. The Northern district of New South Wales is the most important, from the aspect of coal mining, in Australia.

The following table shows the yields in each of the three districts during the five years 1946 to 1950 compared with 1938. Separate details are given respecting coal won underground and from open cuts—

District.		1938.	1946.	1947.	1948.	1949.	1950.
Northern—Underground Open Cut Southern—Underground Open Cut Western—Underground Open Cut	::	Tons. 6,294,213 1,831,408 1,445,309	Tons. 7,176,652 513,449 1,738,058 1,515,297 242,927	Tons. 7,325,874 553,597 1,915,899 1,482,696 405,057	Tons. 7,146,524 635,103 1,922,467 1,397,835 619,517	Tons. 6,244,882 (c) 575,310 1,908,034 1,337,044 670,828	Tons. 7,394,554 931,883 2,395,160 8,219 1,406,862 661,543
Total—Underground Open Cut		9,570,930	10,430,007 756,376	10,724,469 958,654	10,466,826	9,489,960 1,246,138	11,196,576
Grand Total	••	9,570,930	11,186,383	11,683,123	11,721, (10,736,098	12,798,221
Total Value (a)	£	5,652,964	10,534,914	12,101,178	14,938,182	16,121,554	22,121,326
Average value per ton(a)	•••	11s. 10d.	18s. 9d.	208. 81d.	258. 6d.	308. od.	34s. od.

COAL: PRODUCTION IN DISTRICTS OF NEW SOUTH WALES.

Much development has been carried out in recent years on the New South Wales coalfields. Areas receiving particular attention are those in the vicinities of Muswellbrook and Lithgow, where the open-cut mining method is being exploited more fully. Consequently, in 1950, 12,798,000 tons of bituminous and sub-bituminous coal were won, which is 2,062,000 tons more than in 1949, when production was reduced because of the prolonged strike by miners in that year.

Open-cut production accounted for 11.6 per cent. of all coal produced in this State in 1949, and for 12.5 per cent. in 1950, an appreciable advance on the 10.7 per cent. for 1948 and indicative of the extent of the recent development in this sphere.

(ii) Victoria. (a) Black Coal. During 1950, production of bituminous coal rose by 3,924 tons to a total of 126,431 tons. Of this, 109,988 tons or 87.0 per cent., were won from the State Coal Mines at Wonthaggi in South Gippsland, while the remaining 16,443 tons represent the total production of four small mines at Korumburra, Kilcunda, Outtrim and Jumbuppa.

⁽a) At the pit's mouth.

⁽b) Subject to revision.

COAL. 879

The Department of Mines considers that future prospects at the State Coal Mines are doubtful, as seams are becoming increasingly faulted and it is difficult to induce men to work under existing conditions.

The output of black coal in Victoria during each of the five years ended 1950 compared with 1938 was as follows:—

							1
					Quantities.		
	Year.			State Coal- mine.	Other Coal- mines.	Total.	Total Value.
				Tons.	Tons.	Tons.	£
1938				253,065	54,193	307,258	188,101
1946				169,650	21,640	191,290	392,812
1947				153,236	20,447	173,683	299,784
1948				145,880	21,660	167,540	347,687
1949				108,159	14,348	122,507	379,464
1950	• •		• •	109,988	16,443	126,431	382,230

BLACK COAL: PRODUCTION IN VICTORIA.

(b) Brown Coal—General. The mining of brown coal is carried on only in the State of Victoria where extensive deposits exist; estimates place the available reserves at 27,000 million tons. Large-scale development projects are in progress; these, when completed, will greatly reduce the dependence on fuel from other States. Brown coal produced in Victoria in 1949 amounted to 7,375,559 tons, of which 6,965,478 tons or 94.4 per cent. was won at the State open cut at Yallourn. During 1949-50, 6,404,059 tons of brown coal were produced by Yallourn, of which 4,075,075 tons went to the Yallourn power station, and 2,328,984 tons to the briquette factory.

Production of Briquettes. The briquetting plant of the State Electricity Commission started operations in November, 1924, and the output, which in 1926 was 95,477 tons, had increased to 180,905 tons in 1930 and to 588,564 tons in 1949-50. Two and a half tons of brown coal are required to make one ton of briquettes.

The table following shows the production and distribution of brown coal, and the production of briquettes in Victoria for the years 1945-46 to 1949-50, compared with 1938-39.

BROWN COAL: PRODUCTION AND UTILIZATION, VICTORIA. ('000 Tons.)

			s	State Electricity Commission.						
Year.		Total	Brown Coal	used as Fuel.	Brown Coal	D 4 4	Brown Coal for other			
	Production.		Generating Station.	Briquette Works.	Material in Production of Briquettes.	Production of Briquettes,	Industries.			
1938-39 1945-46 1946-47 1947-48 1948-49	•••	3,643 5,534 5,882 6,419 7,027 7,637	2,096 3,525 3,667 3,767 4,130 4,408	516 641 651 743 733 776	1,031 1,282 1,303 1,487 1,467 1,553	400 493 490 545 559 589	 86 261 414 697 900			

⁽a) At the pit's mouth,

(iii) Queensland. The distribution of production of coal during the years 1938 and 1946 to 1950 was as follows:—

COAL: PRODUCTION IN QUEENSLAND.
(Tons.)

District.	;	1938.	1946.	1947.	1948.	1949.	1950.
Bowen	•••	224,778	234,512	267,417	238,487	192,300	213,908
Chillagoe		19,192	22,193	23,907	18,670	!	• •
Clermont		, 88,407	161,777	240,564	216,610	313,124	295,635
Darling Downs		76,571	107,555	123,758	117,277		• •
Eidsvold					i j	27,135	40,359
Ipswich		547,901	823,737	967,007	902,411	921,417	1,144,980
Mackay		1,543			۱ ۱	2,646	
Mareeba					;	23,564	25,331
Maryborough		77,162	103,929	139,635	132,085	136,008	151,475
Mt. Morgan		13,698	31,118	35,586	43,245	144,146	206,886
Rockhampton		64,174		85,540	73,611	76,271	84,970
Roma						15,778	18,213
Toowoomba						98,786	118,235
Warwick	:.		••]	19,213	20,807
Total		1,113,426	1,567,520	1,883,414	1,742,396	1,970,388	2,320,799

The production of 2,320,799 tons in 1950 represents the highest annual production to date.

(iv) South Australia. Coal mined in South Australia is won by open cut methods at Leigh Creek, some 380 miles by rail north of Adelaide. This important deposit yields a low grade sub-bituminous coal of Triassic age, and has known reserves of about 380 million tons. However, this State relies to a great degree on bituminous coal from New South Wales to supplement the demand created by industrial expansion. In its first year of major production in 1944, 34,620 tons were won. However, in 1950, the output had risen to 261,337 tons, valued at £130,669.

Details of production are given in the following table for the years 1946 to 1950.

COAL: PRODUCTION IN SOUTH AUSTRALIA.

Particulars.			1946.	1947.	1948.	1949.	1950.
Quantity Value	••	tons	135,460 47,411	193,351 67,777	239,464 119,732	344,638 172,319	261,337 130,669

COAL. 881

(v) Western Australia. The only coal deposit which has been developed on a commercial scale is at Collie in the south-west of the State. Collie coal is sub-bituminous in rank. Details of production for the years 1946 to 1950 compared with 1938 are given in the following table:—

COAL: PRODUCTION IN WESTERN AUSTRALIA.

Pa	rticulars		1938.	1946.	1947.	1948.	1949.	1950.
Quantity Value		tons £	604,792 375,083	642,287 730,104	730,506 840,249	732,938 880,236	750,594 972,245	814,352 1,185,038

(vi) Tasmania. Two periods of coal formation are represented in Tasmania. The older (Permo-Carboniferous) seams contain fairly high ranking semi-anthracitic coal, with a high sulphur content, but production from these mines represents less than one per cent. of Tasmanian black coal output. The more recent Mesozoic coal of bituminous rank is mined in the north-east of the island, the Cornwall and Mt. Nicholas mines being the most prolific producers. Details of production for the years 1946 to 1950 compared with 1938 are shown in the following table:—

COAL: PRODUCTION IN TASMANIA.

Particulars.		1938.	1946.	1947.	1948.	1949.	1950.
Quantity	tons	83,753	158,751	167,140		181,618	222,351
Value	£	61,991	137,736	154,725		181,897	231,599

(vii) Australia's Coal Reserves. The latest available estimate of the actual and probable coal reserves of Australia is that prepared by the Coal and Lignites Panel of the Power Survey Sectional Committee of the Standards Association of Australia in May, 1950. The following table shows the actual and probable coal reserves as determined by that Committee:—

ACTUAL AND PROBABLE COAL RESERVES OF AUSTRALIA.
('000,000 Tons.)

				Rank o	of Coal.
	State.			Anthracitic and Bituminous.	Sub-bituminous and Lignitic.
New South Wales		 	· · ·	11,770	100
Victoria		 		33	37,0òo
Queensland		 		2,000	67
South Australia		 		• • •	650
Western Australia		 		٠	1,000
Tasmania		 		24.1	
Total		 		(a) 14,000	(a) 39,000

(a) Rounded figures.

3. Production in Various Countries.—The total known coal production of the world in 1949 amounted to about 1,600 million tons, towards which Australia contributed about 21 million tons. The following tables show the production of the chief British and foreign countries during each of the three years 1948 to 1950 compared with 1938, as published by the Statistical Office of the United Nations.

COAL: PRODUCTION IN BRITISH COUNTRIES.
('000 Tons of 2,240 lb.)

Country.		Black Coal.				Brown Coal, Lignite.			
		1938.	1948.	1949.	1950.	1938.	1948.	1949.	1950.
United Kingdom		227,015	216,237	222,102	223,931				
India		29,052	30,787	32,481	33,030				• •
Union of South Africa Australia	• •	16,027 11,680	23.934 14,781	25,410 14,106	26.483 16,543	3,675	6,692	7,376	7,327
Canada		9,223	15,547	15,899	15,607	3,540	1,463	1,719	2,024
New Zealand		2,090	984	966	961	132	1,878	1,939	1,805
Southern Rhodesia		1,027	1,731	1,951	2,158		••	••	

COAL: PRODUCTION IN FOREIGN COUNTRIES. ('000 Tons of 2,240 lb.)

		Black Coal.				Brown Coal, Lignite.				
Country.			1938.	1948.	1949.	1950.	1938.	1948.	1949.	1950.
United State		America	349,684	605,282	442,960	512,861	2,677	2.755	2,761	3,036
Western Geri	nany		b 183,238	88,434	104,894		b 191,899	65,901	73,424	77,058
Poland		• •	37,502	71,388	75,265	79,252	9	5,121	4,694	(a)
France	• •	• •	45,770	43,991	52,026	51,660	1,041	1,865	1,878	1,71
Japan	• •		47,915	34,408	38,675	39,078		2,597	2,122	1,30
Belgium		• •	29,118	27,104	28,299	27,738		•••		• •
zechoslovak	a	• •	15,900	18,033	17,277	18,752		2,397	2,695	2,79
Netherlands		• •	13,275	11,205	11,888	12,449		280	207	19
Spain	٠.	• •	5,559	10,595	10,815	11,217		1,414	1,341	1,36
furkey	• •	• •	2,548	4,085	4,255	4,426		1,013	1,292	1,16
Chile		• •	2,011	2,268	2,109	2,219	1]	• • •		
Brazil	٠.	• •	871	2,061	2,158	1,987		• •	٠٠, ء ا	• •
taly	• •	• •	1,505	988	1,122	1,047		922	846	79.
Mexico		• •	879	1,077	1,089	957		• •	• • •	• •
Indonesia	• •	• •	1,480	546	673	812		••	• • •	• •
Nigeria	• •		374	628	568	604		• •		
Portugal	٠.	• •	303	393	45I	433		105	113	9
Malaya			494	388	400	429		• •		
Vorway			304	444	463	390		••		

(a) Not available.

(b) Pre-war Germany.

World production of coal amounted to 1,440 million tons in 1938; it rose to 1,770 million tons in 1943, but declined to 1,668 million tons in 1948. Of these quantities, those produced in the British Commonwealth totalled 304 million or 21 per cent. in 1938, 286 million or 16 per cent. in 1943 and 307 million tons or 18.4 per cent. in 1948.

4. Exports.—(i) General. The quantity of coal of Australian production exported to other countries in 1949-50 was 68,404 tons, valued at £206,460, shipped mainly from New South Wales. These figures of oversea exports exclude bunker coal supplied to oversea vessels, which in 1949-50 amounted to 135,059 tons, valued at £418,939. The quantities and values of the oversea exports of Australian coal for the years specified are shown in the following table. Similar details for the coal taken for bunker purposes on oversea vessels are shown below in a separate table.

COAL:	OVERSEA	EXPORTS,	AUSTRALIA.
	(Excluding	G BUNKER (COAL.)

Year.		Quantity.	Value.	Year.	Quantity.	Value.
1913 1921–22 1931–32 1938–39 1945–46	•••	Tons. 2,098,505 1,028,767 344,015 382,085 75,883	£ 1,121,505 1,099,899 341,800 347,054 92,764	1946-47 1947-48 1948-49 1949-50	 Tons. 44,375 67,228 36,913 68,404	£ 54,754 108,733 97,353 206,460

Australian coal taken for bunker purposes on oversea vessels during the same years was as follows:—

BUNKER COAL SUPPLIED TO OVERSEA VESSELS, AUSTRALIA.

Year.	Quantity.	Value.	Year.		Quantity.	Value.
1913 1921-22 1931-32 1938-39 1945-46	 Tons. 1,647,870 1,498,035 506,140 549,453 228,977	£ 1,018,375 2,178,101 534,897 561,063 415,167	1946-47 1947-48 1948-49 1949-50		Tons. 355,428 283,354 293,707 135,059	£ 655,207 597,559 836,117 418,939

(ii) New South Wales. The distribution of the total output from New South Wales collieries during the years 1945-46 to 1949-50 compared with 1938-39, according to data compiled by the Government Statistician for that State, was as follows.

COAL: DISTRIBUTION OF OUTPUT, NEW SOUTH WALES.
('000 Tons.)

			Expo				
Year.		Intersta	te as	Oversea	ıs as	Local Consump- tion.	Tota!.
		Cargo.	Bunker.	Cargo.	Bunker.		
1938-39 1945-46 1946-47 1947-48 1948-49		1,860 2,499 2,378 2,537 2,443 1,898	411 287 290 307 284 231	382 75 44 59 31 68	517 173 289 234 233 135	7,213 6,994 8,218 8,951 8,624 8,961	10,383 10,028 11,219 12,088 11,615

5. Consumption in Australia.—Details of the average annual production of coal and its distribution in Australia are given in the following table for the five years ended 1938-39 and 1948-49, together with similar details of production and distribution for the year 1949-50.

Under normal circumstances the production and consumption of coal move in the same direction, but in times of short supplies or abnormal consumption consumers may be compelled to rely upon accumulated stocks, and, consequently annual figures may move out of alignment. For this reason the following table has been prepared on a five-yearly basis in order to smooth out any variations from the normal.

COAL: PRODUCTION AND UTILIZATION IN AUSTRALIA.

coal: Produc	TION AN	D UTILIZ	CATION I	N AUSIR	ALIA.	
		Quantity.		Prop	portion of T	otal.
Particulars.	Average fo	or five years ed—	1949-50.	Average for end	Average for five years ended—	
	1938-39.	1948-49.	-949 501	1938-39.	1948-49.	1949-50.
	BL	ACK COAL	L.		,	
	'000	'000	'000	1	1	
Source of Supplies—	Tons.	Tons.	Tons.	%	%	%
Production (a)	11,169	14,095	14,918	99.72	99.68	96.79
Imports	31	45	494	0.28	0.32	3.21
Total Supplies	11,200	14,140	15,412	100.00	100.00	100.00
Disposal—	 	i	-			
Exported Overseas—	į	i	}			
Bunker	592	²⁷⁴ 83	(b) 135	5.29	1.94	0.88
Other	346	83	68	3.09	0.58	0.44
Total	938	357	203	8.38	2.52	1.32
Consumed as fuel in— Electric Light and Power						
Works	1,796	3,190	3,687	16.03	22.56	23.92
Factories (c)	2,067	2,392	2,530	18.46	16.91	16.42
Railway Locomotives (d)	2,328	3,115	3,099	20.78	22.03	20.11
Total	6,191	8,697	9,316	55.27	61.50	60.45
Consumed as raw material				 		
Gas works	1,111	1,867	1,865	9.92	13.20	12.10
Coke works	1,467	1,807	1,973	13.10	12.78	12.80
Total	2,578	3,674	3,838	23.02	25.98	24.90
Balance available for other	-		<u>'</u>			
consumption and accu-		i	i			
mulation of stocks (e)	1,493	1,412	2,055	13.33	9.99	13.33
Grand Total	11,200	14,140	15,412	100.00	100.00	100.00
		own Coa		<u> </u>]	
				4		
	,000	,000	,000	1 01	٠, ا	0.
Duadantian of Duama Cool	Tons.	Tons.	Tons.	%	%	%
Production of Brown Coal	3,064	6,022	7,637	100.00	100.00	100.00
Utilization— As fuel in Electric Light and						
Power Works	1,673	3,722	4,408	54.60	61.81	57.72
As fuel and as a raw	-,-/3	3,1-2	7,7-0	JT. 30		37.7-
material by Briquette	}					
Works	1,391	2,006	2,317	45.40	33.31	30.34
Recorded consumption as fuel in factories	1.55	. 055	764	(<i>f</i>)	1 27	10.00
Balance—Unrecorded con-	(f)	257	/04	(J)	4.27	10.00
sumption, other purposes	<u>(f)</u>	37	148	(f)	0.61	1.94
Total	3,064	6,022	7,637	100.00	100.00	100.00

⁽a) Includes miners' and colliery coal. available. (d) Government railways only. shipping. (f) Not available.

⁽b) Incomplete. (c) Estimated when details not (e) Includes bunker coal for interstate and intrastate

COAL. 885

In order to meet the greatly increased demands for coal in Australia, arrangements have been made in recent years to import considerable quantities to augment local supplies. The quantity imported in 1949-50 was 493,805 tons.

6. Coal Value at Pit's Mouth in New South Wales.—Particulars of the average value at the pit's mouth of the saleable output of coal for each district and for New South Wales as a whole are shown in the following table for the years 1938 and 1946 to 1950, according to figures compiled by the State Statistician. The figures relate to the pit head value (including subsidy). Excise duty operative from 1st November, 1949 is also included.

AVERAGE VALUE(a) AT THE PIT'S MOUTH PER TON OF SALEABLE COAL(b): NEW SOUTH WALES.

(s.	d.)	

	Ye	ear.		Northern District.	Southern District.	Western District.	Average for State.
1938				12 0	14 0	96	12 0
1946				18 8	23 I	15 7	18 10
1947				20 II	23 11	16 10	20 9
1948				26 I	29 11	20 6	25 8
1949				31 8	33 4	22 6	30 3
1950				36 5	34 5	29 4	34 11

⁽a) Includes subsidy from 1943 and excise duty from November, 1949. (b) "Salcable" output represents "gross" output, less coal used in operating the mines, and miner's coal.

7. Prices in New South Wales, Great Britain, Canada and the United States of America.—In the following table the prices of coal in Canada and the United States of America are compared with the average value per ton of coal in New South Wales and Great Britain.

AVERAGE PRICES OF COAL PER TON: NEW SOUTH WALES, GREAT BRITAIN, CANADA AND UNITED STATES OF AMERICA.

Country.	1938.	1944.	1945.	1946.	1947.	1948.	1949.	1950.
New South Wales—Bitu- minous(a)	8. d. 12 O	8. d. 17 10	8. d. 18 7	8. d. 18 10	s. d. 20 9	8. d. 25 8	8. d. 30 3	8. d. 34 II
Great Britain—Deep minedb	16 8 8	3 I 3	35 O	36 10 S	40 3 \$	47 21	47 11	47 9
Canada—Bituminous(c) ! United States of America—	5.417	6.650	6.788	6.980	6.980	6.980	6.980	(d)
Bituminous (e)	4 - 327	5 - 239	6.356	5.776	6.873	(f)8.11 3	(f)8.631	(f)8.738

⁽a) Average pit head value per ton of 2,240 lb.; the figures relate to saleable coal and include subsidy from 1941 and eveise duty from November, 1949. (b) Average value in sterling at the mine per ton of 2,240 lb. (c) Wholesale price in Canadian currency per ton of 2,000 lb. (d) Not available. (e) Wholesale price, car-lots, on tracks, destination, in United States of America currency per ton of 2,000 lb. (f) Figures for 1948 to 1950 represent averages for nine months, nine months and ten months respectively. As a result of changes in the basis of compiling the averages, figures are not strictly comparable from year to year.

8. Employment in Coal-mines.—The number of persons employed, both above and below ground, in coal-mines in each of the producing States is given for selected years from 1915 and for the years 1945 to 1950 inclusive:—

	COAL-MINES:	PERSONS	EMPL	OYED.
--	-------------	---------	------	-------

		New	Vict	oria.	Queens-	South	Western	Tas-	Total.	
	Year.	South Wales.	Black.	Brown.	land.	Australia.	Australia.	mania.		
1915	•••	 17,959	1,312	(a)	2,518		498	161	22,448	
1925		 24,049	1,947	646	2,826		677	312	30,457	
1935	••	 13,337	1,397	615	2,455		689	340	18,833	
1938	••	 15,815	1,322	444	2,495	•••	765	269	21,110	
1945		 17,427	1,016	584	2,966	100	860	279	23,232	
1946		 17,448	924	655	2,641	121	955	276	23,020	
1947		 17,614	86o	594	3,337	124	1,032	288	23,849	
1948		 18,693	824	526	3,323	237	1,064	274	24,941	
1949		 18,546	787	811	3,390	347	1,044	312	25,237	
1950		 18,540	777	889	3,495	408	1,099	334	24,653	

⁽a) Included with black coal; production prior to 1925 was of little significance.

The year of maximum employment was 1926 when 31,774 persons were engaged in the coal-mines of Australia. Shortly after that year the industrial depression and a prolonged stoppage of work on one of the principal fields of New South Wales during 1929 and 1930 seriously affected the figures of employment. Since 1933 there has been a gradual increase, but the numbers employed in 1950 were only about three-quarters of the maximum figure already quoted. In New South Wales in 1939, 3,594,000 tons of coal, or 32.1 per cent. of the total output of underground coal, was cut by machinery, compared with 3,819,000 tons or 36.6 per cent. in 1946, 4,150,000 tons or 38.7 per cent. in 1947, 3,805,357 tons or 36.4 per cent, in 1948, 3,364,351 tons or 35.5 per cent. in 1949, and 4,345,836 tons or 38.8 per cent. in 1950. Similar details for other States are not available.

9. Accidents in Coal-mining.—The following table gives the number of persons killed or injured in the coal-mining industry in Australia during 1949, with the proportion per 1,000 employed, a factor which must be reckoned with in any consideration of the degree of risk attending mining operations. Due to the different bases of recording mining accidents in the various States of Australia the figures in the table below are not strictly comparable between States.

COAL-MINING: EMPLOYMENT AND ACCIDENTS, 1949.

State.		Persons Employed in Coal-	No. of Persons.				Proportion per 1,000 Employed.		
		mining. Killed.		Injı	ired.	Killed.	Injured.		
New South Wales		18,546	(a)	24	(a)	75	1.29	4.04	
Victoria(b)		1,598	•			3	••	1.88	
Queensland	••	3,390	• •	,		156	• • •	46.02	
South Australia	••	347	•	•	1	12		34.58	
Western Australia	• •	1,044	l	I	i	175	0.96	167.62	
Tasmania	••	312	•	•		4		12.82	
Total		25,237		25		425	0.99	16.84	

⁽a) Includes shale.

⁽b) Includes brown coal.

COAL. 887

3.8

0.2

0.6

0.2

22.2

1.21

1.08

0.61

0.70

0.93

The next table shows for the five-yearly period 1945 to 1949 annual averages respecting the number employed in mining and the number of fatalities, and the proportion of fatalities per 1,000 employed.

COAL-MINING: AVERAGE ANNUAL FATALITIES, 1945 TO 1949.

Queensland

Tasmania

South Australia

Western Australia

Total

State.	Average No. of Coal-miners Employed.	Average Annual No. of Fatalities.	Proportion per 1,000 Employed.
New South Wales Victoria	 17,946	16.0 1.4	0.89 1.10

3,131

185

991

286

23,807

10. Commonwealth Board of Inquiry into the Coal-mining Industry.—Reference to the appointment in 1945 of the Commonwealth Board of Inquiry, its terms of reference and the report issued in 1946 is given in Official Year Book No. 37, page 842.

. .

. .

II. Joint Coal Board.—(i) General. Under war-time emergency legislation, the Commonwealth had wide powers to control the production, distribution and price of coal in Australia. Under peace-time conditions, however, the constitutional powers of the Commonwealth were less effective and in order to ensure the maintenance of supplies of coal to meet the peace-time needs of industry it was necessary to seek wider powers.

With this objective in view, the Governments of the Commonwealth and New South Wales, the chief coal-producing State, mutually agreed to create jointly an authority with powers similar to and in some respects wider than those possessed under Commonwealth war-time legislation. Following this agreement, the Joint Coal Board was created and has functioned as from 1st March, 1947.

- (ii) Constitution. The legislative authority of the Joint Coal Board is contained in the Coal Industry Act No. 40 of 1946 passed by the Commonwealth Parliament and in the Coal Industry Act No. 44 of 1946 passed by the Parliament of New South Wales. Both Acts are identical for all practical purposes except that the New South Wales Act granted to the Board powers to control collieries and compulsorily to requisition and resume land, buildings, plant, machinery and equipment.
- (iii) Powers. Under Section 14 of the Commonwealth Act and Section 11 of the New South Wales Act, the powers and functions of the Board are stated to include the taking of such action as is necessary or desirable—(a) to ensure that coal is produced in the State in such quantities and with such regularity as will meet requirements throughout Australia and in trade with other countries; (b) to ensure that the coal resources of the State are conserved, developed, worked and used to the best advantage in the public interest; (c) to ensure that coal produced in the State is distributed and used in such manner, quantities, classes and grades and at such prices as are calculated best to serve the public interest and secure the economical use of coal and the maintenance of essential services and industrial activities; and (d) to promote the welfare of workers engaged in the coal industry in the State. In addition, the Board has full power with regard to health matters but does not exercise any basic responsibilities as regards safety measures or inspection of mines; these duties remain the responsibility of the New South Wales Department of Mines.

§ 9. Coke.

1. General.—The production of metallurgical coke in Australia was limited to about 250,000 tons per annum prior to the 1914–18 War. This was below local requirements and necessitated an annual import of about 27,000 tons from abroad. By 1920, production had risen to more than 500,000 tons and by 1938–39 it had reached 1,164,873 tons. This increased production permitted an export of 30,000 tons in 1938–39. Imports in the same year were 9,700 tons. In 1949–50 the quantity exported was 2,791 tons, valued at £15,661, of which 2,217 tons, valued at £12,362, went to New Zealand. In the same year 21,269 tons, valued at £125,173, were imported, of which 12,203 tons, valued at £59,411, came from the Union of South Africa.

In addition to metallurgical coke referred to above (which is produced by specialized coke works), considerable quantities of coke are produced in gas works as a by-product of the manufacture of gas. Output in gas works in 1949–50 was 1,094,982 tons compared

with 757,046 tons in 1938-39.

In order to avoid duplication with coal values, the returns for coke have not been included in the general tables of mineral production in the early part of this chapter.

2. Total Production, Australia.—In the following table, particulars of the production of coke in coke works and gas works in Australia are shown for the years 1938–39 and 1945–46 to 1949–50. Relevant particulars of the output of coke breeze are also shown.

		TOTAL	COKE PROI	DUCTION:	AUSTRAL	IA.	
Industry.		1938-39.	1945-46.	1946-47.	1947-48.	1948-49.	1949-50.
			<u>C</u>	OKE.			·
Coke Works Gas Works	• •	1,164,873 757,046	986,005 1,027,157	1,197,636 1,072,906	1,384,238 1,170,545		1,182,773
Total		1,921,919	2,013,162	2,270,542	2,554,783	2,331,555	2,277,755
			Coke	BREEZE.			
Coke Works Gas Works		78,584 35,996	(a) 80,466 51,845	93,403 55,546	(a)111,062 60,556		87,394 75,604
Total		114,580	132,311	148,949	171,618	157,599	162,998

TOTAL COKE PRODUCTION - AUSTRALIA

§ 10. Other By-Products from Coal. In addition to coke, other products are obtained from the treatment of coal by coke

In addition to coke, other products are obtained from the treatment of coal by coke and gas works. Details of some of these are given in the following table.

OTHER RY-PRODUCTS EROM COAL: AUSTRALIA

UIIIER	DY-PRUL	OCIS PRO	JM COAL	AUSTRA	ILIA.	
Commodity.	1938–39.	1945–46.	! 1946–47.	1947-48.	1948-49.	1949-50.
Tar—Crude Refined(a) Tar Oils (crude) Ammoniacal Liquor Ammonium Sulphate(a)	1,254,396 5,387,638 Tons.	13,185,119 3,176,381 17,153,833 Tons.	14,631,470 3,868,652 16,336,785 Tons.	14,996,193 4,021,552 18,102,385 Tons.	13,533,750 5,233,702 19,271,830 Tons.	12,324,454 3,758,406 18,119,657 Tons.

(a) Includes production in other works.

⁽a) Includes a small quantity produced in other works.

§ 11. Shale-oil and Mineral Oil.

- 1. Shale-oil.—(i) General. Reference to the deposits of shale and the search for mineral oil in Australia will be found in Official Year Book No. 22, pp. 791-3.
- (ii) New South Wales. Reference to the establishment of the shale-oil industry in Australia will be found in previous issues of the Official Year Book. In 1937 negotiations were completed between the Commonwealth and New South Wales Governments and the National Oil Proprietary Ltd., by which the latter company undertook to develop the shale-oil industry in the Newnes-Capertee district. The Commonwealth Government agreed to protect the industry by exempting from excise, up to 10 million gallons annually, the Company's output of petrol for a period of 25 years.

Production of petrol from crude oil commenced at Glen Davis, near Newnes in 1940 and a total of 24,501,186 gallons of petrol had been produced to the end of 1950.

In January, 1951, the Commonwealth Government announced that in view of the continued uneconomic operation of the project, its small contribution to Australian petroleum supplies, the doubtful prospect of raising production to a considerably higher figure and the urgent need for miners in black coal production, it would close down the works completely as soon as possible. In September, 1951, the Government appointed a receiver in National Oil Pty. Ltd., the company which has operated this project.

The following table shows the production of oil shale during the years 1943 to 1949 compared with 1940:—

	Year.	 Quantity.	Value.		Year.		Quantity.	Value.
1940 1943 1944 1945		 Tons. 43,805 116,875 137,458 123,170	£ 43,805 160,215 165,285 164,648	1946 1947 1948 1949		••	Tons. 121,654 138,427 136,352 120,956	£ 139,902 193,798 204,528 181,437

OIL SHALE: PRODUCTION IN NEW SOUTH WALES.

(iii) Tasmania. About 38,000 gallons of crude oil were produced in 1934 from shale treated in Tasmania, while the total quantity of oil distilled from shale up to the end of 1934 was set down at 357,000 gallons. The plant owned by the Tasmanite Shale Oil Company has not operated since the end of January, 1935.

Interest in the commercial utilization of oil shales of the Mersey Valley for the extraction of fuel oils has been retarded due to structural and physical conditions for underground mining and the low-grade nature of the shale.

- 2. Coal Oil.—Reference to investigations made into the possibility of establishing plants for the production of oil from coal is made in previous issues of the Official Year Book.
- 3. Natural Oil.—(i) Australia. Natural oil has been proved to exist in Queensland, Victoria and Western Australia, the best indications being found in Victoria and Queensland. Many of the conditions favourable to the accumulation of oil in commercial quantities have been shown to be present in Queensland, Western Australia and New South Wales. In the latter State, however, no strong positive evidence of its existence has been recorded.

Reference is made in § 14 below to the assistance afforded by the Commonwealth Government in the search for petroleum oil.

(ii) Victoria. There has been a small production of crude oil from Lakes Entrance. For the year ended 31st December, 1950, production was 40,000 gallons. Gravity and aeromagnetic surveys have been carried out by the Bureau of Mineral Resources* in

^{*} References to this Bureau in this and succeeding paragraphs relate to the Commonwealth Bureau of Mineral Resources, Geology and Geophysics—see § 14 para, 1. following.

East Gippsland and it is proposed to extend the gravity surveys and carry out seismic surveys. Geological surveys have been carried out in the Portland-Nelson-Mt. Gambier area of Western Victoria and the eastern part of South Australia by the Departments of Mines of Victoria and South Australia. Geophysical surveys (gravity) were made in Western Victoria by the Bureau of Mineral Resources.

- (iii) Queensland. A test bore was drilled at Rolleston by Shell (Queensland) Development Pty. Ltd., but was abandoned early in 1951 after igneous rock had been penetrated. The Bureau of Mineral Resources has conducted geophysical surveys in the Comet and Roma areas. In the case of Comet, the Shell company decided against further bores but it is expected that drilling operations will be undertaken at Roma.
- (iv) South Australia. Under prescribed conditions, the South Australian Government offers a bonus of £5,000 to the person or body corporate which first obtains from a local bore or well 100,000 gallons of crude petroleum containing not less than 90 per cent. of products obtainable by distillation.

Geophysical surveys were undertaken by private interests during 1947, and continued into 1948, in the north-east corner of the State and extending over the border into New South Wales and Queensland, but with little success. Assistance given by the Commonwealth included equipment and a geophysical survey party.

- (v) Western Australia. Geological and geophysical surveys by the Bureau of Mineral Resources in connexion with the search for oil have been in progress since 1947 in the North West Basin and Desert Basin areas. The deep drilling operation which commenced in 1939 on the Nerrima Dome in the Kimberley district was suspended in 1942, for security reasons, at a depth of 4,271 feet. Operations were resumed in 1948, but were abandoned in 1950. Proposals are under consideration for drilling another bore on the structure.
- (vi) Papua. After the 1939-45 War, test drilling by the Australasian Petroleum Company Pty. Ltd. was resumed in 1946. At the end of 1950 four bore-holes had been completed and two were in progress, but no oil had been produced. Geological and geophysical surveys and test drilling are being continued by this company and also the Island Exploration Pty. Ltd.
- (vii) General. During 1939 efforts were made to secure greater uniformity in State legislation governing the search for oil. A draft Bill based on modern legislation in other countries was prepared by the Commonwealth and submitted to the State Governments. As a result amending legislation was passed in Victoria, Queensland, South Australia and Western Australia. There was immediate response to this in Queensland, where an agreement has been reached between the State Government and one of the major oil companies, whereby the company has undertaken to spend up to £400,000 in the search for oil in that State.

Further details of action taken by the Commonwealth Government in connexion with the search for oil will be found in § 14. "Government Aid to Mining, and Mineral Control".

§ 12. Gems and Gemstones.

1. Diamonds.—It is difficult to secure accurate returns in connexion with the production of precious stones, but the yield of diamonds in 1949 in New South Wales was estimated at 5 carats, valued at £15. The majority of diamonds are won in the Inverell district. The total production to the end of 1949 is stated as 206,957 carats, valued at £150,814.

2. Sapphires.—The production of sapphires in New South Wales during 1929 was returned as 65 oz., valued at £450, obtained wholly at Sapphire in the Inverell district, From 1941 to 1949 inclusive, a total of 3,970 oz., valued at £2,803, was won, of which 1,200 oz., valued at £600, were recorded in 1941. Production in 1949 was only 10 oz., valued at £5.

In Queensland, the value of gems won in 1948 was £6,059 and in 1949, £4,868. There were about 120 miners operating on the fields during 1934 but only 32 at the end of 1949. Production has declined very considerably since 1920, when the yield was valued at £66,000.

3. Precious Opal.—The estimated value of the opal won in New South Wales during 1949 was £1,592. This is not regarded as the total output of the State, however, because in many instances miners, buyers and collectors leave the fields before a record of their production or purchases can be secured. Some very fine stones are sometimes obtained, one weighing 5 ozs. and valued at £300, being found in 1911. Three finds of large stone were made in 1928, the gems weighing 790, 590 and 232 carats respectively and showing a fine adamantine lustre. Occasionally black opals of very fine quality are found, one specimen from the Wallungulla field, weighing 6½ carats, being sold in 1910 for £102, while in the early part of 1920 a specimen realized £600. It is stated that this locality is the only place in the world where the "black" variety of the gem has been found. The total value of opal won in New South Wales since 1890 is estimated at about £1,645,500 but, as pointed out above, the figures are to some extent understated.

In Victoria small quantities of precious opal have been found in the Beechworth district.

The opal bearing district in Queensland stretches over a considerable area of the western interior of the State, from Kynuna and Opalton as far south as Cunnamulla. The yield in 1949 was estimated at £1,200, and up to the end of that year, at about £189,200. These figures are, however, merely approximations, as large quantities of opal, of which no record is obtained, are disposed of privately. The greatest recorded output was for the year 1895, when the yield was valued at £32,750.

Owing to the poor market for gems, production from the Coober Pedy opal field, situated in the Stuart Range in South Australia, fell from £11,056 in 1929 to £1,517 in 1934. The production rose in 1937 to £11,887, but declined to £6,020 in 1939, and rose again to £11,568 in 1941. After a further drop in 1942, to less than £6,000, the value of production rose in 1947 to £61,569, the greatest annual production ever recorded. However, the value of production dropped to £39,798 in 1949. The field is extremely prolific, a large quantity of precious white opal having been raised therefrom, and only a small portion of the known opal-bearing area has been thoroughly tested.

4. Other Gems.—Various other gems and precious stones have from time to time been discovered in the different States, the list including agate, amethyst, beryl, chiastolite, emerald, garnet, moonstone, olivine, ruby, topaz, tourmaline, turquoise and zircon. In Western Australia, 609 carats (rough) of emeralds, valued at £278, were produced during 1929 in the Cue district on the Murchison gold-field. The value of the 3,750 carats reported from the same area in 1930 was not ascertainable as there were no sales during the year. There has been no recorded production since 1930. During the three years 1939, 1940 and 1941, 10 tons of beryl ore, valued at £83, were produced in Western Australia. There was no production in 1942, but in the period 1943-49, 1,051 tons were produced, valued at £33,755. The largest production was registered in 1943 when 515 tons were won, valued at £14,564. The most recent production figures show a marked decrease to 35 tons, valued at £2,122, in 1949.

Until recently, beryl was chiefly sought as a gemstone—the emerald variety being particularly valuable. However, research over the past few years has shown that the metal beryllium has wide applications in industrial alloys with copper, aluminium and iron. These alloys possess unusual hardness, tensile strength and resistance.

§ 13. Number Engaged, Wages Paid and Accidents in Mining.

1. Total Employment in Mining.—The number of persons engaged in the mining industry in Australia fluctuates according to the season, the price of industrial metals, the state of the labour market, and according to the permanence of new finds and the development of the established mines. During 1949 the number so engaged was as follows:—

NUMBER OF	PERSONS	ENGAGED	IN	MINING,	1949.
-----------	---------	---------	----	---------	-------

		N	umber of	Persons en	gaged in	Mining for	-	
State.	Gold.		Silver, Lead and Zinc.	Lead Copper.		Coal.	Other.	Total.
New South Wales		688	6,052	136	548	18,546	1,566	27,536
Victoria		1,019	,,,,,			a 1,598	241	2,858
Queensland		1,589	1,285	57	515	3,390	330	7,166
South Australia		52	32	14		347	1,103	1,548
Western Australia		6,800	135	3	24	1,044	496	8,502
Tasmania		9	616	757	576	312	158	2,428
Northern Territory		238	6	32	82		104	462
Australia		10,395	8,126	999	1,745	25,237	3,998	50,500

⁽a) Includes 811 engaged in mining brown coal.

Included in the figures for "other" in South Australia were 175 engaged in mining iron ore, 87 gypsum miners, 269 salt gatherers, and 70 opal miners. The Tasmanian figures include 137 scheelite miners. The Northern Territory figures include 44 wolfram and 55 mica miners.

The following table shows, at intervals since 1911, the number of persons engaged in mining in each State and the proportion so engaged of the total population:—

NUMBER ENGAGED IN MINING AND PROPORTION PER 100,000 OF POPULATION.

		1911.		19	21.	1931.	
State.		Miners engaged.	No. per 100,000 of Popu- lation.	Miners engaged.	No. per 100,000 of Popu- lation.	Miners engaged.	No. per 100,000 of Popu- lation.
New South Wales Victoria		37,017 15,986 13,201	2,225 1,210 2,147	29,701 5,211 5,847	1,410 339 766	30,682 6,463 6,753	1,200 359 730
South Australia	• •	6,000	1,457	2,020	406	518	90
Western Australia	• •	16,596	5,787	7,084	2,122	7,147	1,653
Northern Territory		5,247 715	2,760 21,595	3,170	1,486 3,356	3,397 145	1,512 2,918
Australia		94,762	2,109	53,164	974	55,105	844

NUMBER ENGAGED IN MINING AND PROPORTION PER 100,000 OF POPULATION—continued.

	1941.		1948.		1949.		
State.		Miners engaged.	No. per 100,000 of Popu- lation.	Miners engaged.	No. per 100,000 of Popu- lation.	Miners engaged.	No. per 100,000 of Popu- lation.
New South Wales Victoria		27,554 4,839 6,541 940 14,021 2,974 424	984 250 631 156 2,958 1,237 4,125	27,571 2,484 7,222 1,130 8,700 2,357 394	910 119 643 172 1,690 891 3,233	27,536 2,858 7,166 1,548 8,502 2,428 462	884 134 624 230 1,595 899 3,428
Australia		57,293	807	49,858	648	50,500	638

The upward movement in the number of miners engaged which commenced in 1930 reached a peak of 998 per 100,000 of population in 1937, but thereafter the ratio declined continuously to the level of 569 in 1945. After the 1939-45 War the ratio increased to 646 in 1947 and remained at much the same level during the next two years.

- 2. Wages Paid in Mining.—Information regarding rates of wages paid in the mining industry is shown in the *Labour Report* issued by this Bureau.
- 3. Accidents in Mining, 1949.—The following table shows particulars of the number of men killed or injured in mining accidents during 1949:—

MINING ACCIDENTS, 1949.

Mining for-	N.S.W.	Victoria.	Q'land	S. Aust.	W. Aust.	Tas.	N.T.	Australia.
	·		Kill	ED.	·	·	·	<u>'</u>
Coal	(a) 24				ı			25
Copper			(b) I		· · ·		٠	I
Gold	I	2	2	í···	9		I	15
Iron	t				i			
Silver, lead and	,	1		1]			1
zinc	5		2			I		8
Tin				• • •			1	1
Other minerals	5						¦	5
Total	35	2	5		10	I	2	55
			Injur	ED.				
Coal	(a) 75	3	156	12	175	4	l	425
Copper			(b) 51			3		54
Gold	16	6	11		662		2	697
Iron				5				5
Silver, lead and		ŀ	ļ				l	
zinc	23		51			3	۱	77
Tin			5	• • •		6	4	15
Other minerals	13	6	I	7		• •	'	27
Total	127	15	275	24	837	16	6	1,300

⁽a) Includes shale.

⁽b) Copper and gold.

§ 14. Government Aid to Mining, and Mineral Control.

1. Aid to Mining.—(i) Commonwealth. (a) General. The Precious Metals Act 1926, the Gold Bounty Act 1930, the Loan Appropriation (Unemployment Relief) Act 1934, the Northern Australian Survey Act 1934 and the Gold Mining Encouragement Act 1940, mentioned in the previous issue of the Official Year Book, either have become inoperative or have been superseded. The Petroleum Oil Search Act 1936 is still in force. Further expenditure under the Gold Mining Encouragement Act is not contemplated, as an entirely new method of providing financial assistance to the mining industry is in operation, and is described below. Similarly no further expenditure is contemplated under the Petroleum Oil Search Act 1936, except for two projects not yet completed, and the Government policy now is to conduct geological and geophysical surveys of possible oil fields (see below).

Applications for financial assistance for the development of mining projects which offer promise of contributing materially to the economic welfare of the Commonwealth may be considered by the Bureau of Mineral Resources and the Treasury after consultation with the State concerned. This policy supersedes that set out in Official Year Book No. 37, page 849—the Australian Mining Council which was to have been set up under the previous policy has not met or fulfilled any of its functions and its creation was not finalized.

The Commonwealth Government in 1948 decided to provide financial assistance to certain gold mines in remote and isolated parts of Western Australia. These mines were experiencing difficulty because income from the fixed price for gold was insufficient to cover higher operating costs due to a number of factors, including the general rise in the level of wages and prices. Before granting assistance, the mine, its financial position and its relation to the economic and social welfare of the district were investigated by officers of the Bureau of Mineral Resources and the Treasury in collaboration with the State Mines Department, and conditions which should be observed in order to obtain financial assistance were laid down. Assistance as decided in 1948 was in the form of periodical payments sufficient to cover the difference between revenue and expenditure and to provide a return of 4 per cent. on the paid-up capital of the Company, but in 1949 this was increased to 6 per cent. At the same time the assistance scheme was extended to enable gold mines in remote areas of other States to participate. The scheme was terminated on the devaluation in September, 1949 of the Australian pound in terms of the United States of America dollar, which had resulted in a rise of £4 14s. 7d. per fine ounce in the Australian price of gold. Officially, the scheme of assistance operated to 31st December, 1950, but, because of the higher gold price, all mines made profits and so did not qualify for the 6 per cent. profit subsidy.

- (b) Rewards for discovery of Uranium Ore. To encourage the search for and discovery of deposits of uranium ore, the Commonwealth Government has approved the granting of monetary rewards. These rewards will be paid as follows:—(1) £1,000 for the discovery of a deposit containing sufficient ore to be of economic importance; (2) £1,000 for the discovery of a deposit capable of producing 25 tons or more of uranium oxide and £2,000 for each 25 tons in excess of the first 25 tons; and (3) a maximum of £25,000 for any one deposit.
- (c) Bureau of Mineral Resources, Geology and Geophysics. The Bureau of Mineral Resources, etc. has sections dealing with geology and geophysics, mining engineering, fuel technology and mineral economics. The geological section conducts all surveys required in Commonwealth Territories, detailed and regional surveys in conjunction with or by arrangement with the State Mines Departments, surveys of possible oil-fields in Australia and New Guinea, surveys of mines for which financial assistance is sought, and investigations of deposits of radio-active minerals. The geophysical section conducts investigations throughout Australia and New Guinea connected with the search for metalliferous, radio-active and other mineral deposits; problems connected with exploration for coal, oil and water; regional magnetic and gravity surveys; engineering and military geophysics; and the operation of geophysical (magnetic and seismic) observations. The Bureau works in close co-operation with the Mines Departments of

the States. It has assumed full responsibility for geological and geophysical surveys in Commonwealth Territories, but suitable arrangements have been made to ensure that the local Administrations have the necessary technical advice directly available to them. The Bureau has also assumed full responsibility for scout-boring to prove deposits of coal in New South Wales suitable for working by open-cut methods.

- (d) Diamond Drills. The four diamond drills mentioned in the previous Official Year Book have arrived in Australia and are now in use. Further light drills have been purchased and special equipment for alluvial prospecting has been ordered.
- (e) Search for Oil. No variation has been made in the policy described in Official Year Book No. 37, page 850, regarding the search for petroleum throughout Australia and its Territories. In addition to its activities set out in that Year Book, the Bureau of Mineral Resources, Geology and Geophysics furnishes field laboratories and trained personnel to assist small companies in recording scientific information obtained while drilling for oil. A modern diesel-driven rotary drilling plant has been ordered for deep test-drilling on suitable geological structures.

The Commonwealth Government has encouraged the search for oil in Australia, Papua and New Guinea; details of the efforts made are outlined in previous issues of the Official Year Book. A considerable amount of geological work and test drilling was conducted under the provision of the Petroleum Oil Search Act 1936 and, at the outbreak of the 1939–45 War, two tests were partially completed, one at Oiapu in the Gulf district of Papua and the other at Nerrima in the Kimberley district of Western Australia. At Nerrima the Freney Kimberley Oil Co. (1932) N.L. rejected a Commonwealth offer of financial assistance. The company is now drilling with financial assistance from the Government of Western Australia, using a drilling plant hired from the Commonwealth; technical advice and assistance is also provided by the Commonwealth.

- (f) Survey of North Australia. Reference to this survey which was completed at the end of 1940 appears in Official Year Book No. 35, page 744. A few reports on individual areas remain to be printed.
- (g) Mining Industry Advisory Panel. This panel has not functioned since 1946. The Bureau of Mineral Resources completed the draft of a uniform Act dealing with health and safety in mines, recommended by the Panel. A meeting of the Chief Inspectors of Mines of all States and Territories was held in November, 1950, to consider this draft and considerable progress was made in achieving uniformity. A committee has been set up to advise on non-destructive testing of wire ropes used in the mining industry.
- (h) Ore-dressing and mineragraphic investigations. These investigations are conducted by the Commonwealth Scientific and Industrial Research Organization as required by the industry. Ore-dressing investigations are carried out conjointly with appropriate State institutions, the three laboratory centres being the School of Mines, Kalgoorlie, the School of Mines and Industries, Adelaide, and the University of Melbourne.

The grant of £22,000 mentioned in Official Year Book No. 37, page 851, was expended by 1947; since that year funds to continue the investigations are included in an investigational vote approved annually for the Commonwealth Scientific and Industrial Research Organization. In 1948 the Government expended approximately £5,000 on ore-dressing and £6,100 on mineragraphic investigations.

- (i) Petroleum Legislation. The petroleum ordinances of Papua and New Guinea have been amended and combined in a single ordinance; No. 6 of 1951, entitled Petroleum (Prospecting and Mining) Ordinance 1951.
- (ii) States. (a) General. In addition to free assays and determinations of rocks and minerals carried out for prospectors by the Mines Departments of the States and Territories, technical officers of these departments provide advice to the mining industry where required, carry out field examinations of mining prospects, advise on exploration and development, select sites for water supply, and in general give a free technical service to the mining industry.

- (b) New South Wales. State aid to assist metalliferous mining consisted of grants to assist the prospecting and/or mining for gold and minerals and for the purchase, removal and installation of mining plant or equipment. In 1949, this assistance totalled £2,448, the greater part of which was granted to prospect or mine for either tin or gold.
- (c) Victoria. Grants may be made to assist prospecting and development or the purchase of machinery. The Mines Department has 24 stamp batteries in different parts of the State to crush ore for prospectors at nominal rates. Small mining companies may avail themselves of these facilities.
- (d) Queensland. The Mines Department maintains a treatment works for tin ores, etc. at Irvinebank, an assay office at Cloneurry and diamond-drilling plants in several parts of the State. The Venus State Mill at Charters Towers is available for the treatment of gold-bearing ores and another State battery is located at Kidston. In addition, many departmental compressor plants, pumping plants and other mining equipment are provided and made available on hire on the principal mining fields. Financial aid granted to prospectors for 1949 amounted to £15,847, whilst other forms of aid for mining granted by the State amounted to £294,590 for the same period.
- (e) South Australia. During 1940 the Premier announced that assistance would be given to copper mining in the form of financial help towards such development work as was absolutely necessary for a mine to enter upon reasonably continuous production. On 5th November, 1942, the Leigh Creek Coal Act was passed to develop the Leigh Creek Coalfield. As a result of extensive drilling operations, development of open-cut mining was commenced in January, 1943. State aid to mining during 1948 totalled £79,194, of which £14,928 was for coal, £7,074 for copper, £8,394 for gold, and the balance, £48,798, for other minerals. The State maintains batteries and cyanide works at Mount Torrens, Peterborough, Mongolata, Tarcoola and Glenloth, and assays for public purposes are made at the School of Mines.
- (f) Western Australia. Financial aid granted to prospectors and others in 1949 amounted to £26,226; this sum was allotted as follows:—coal, £11,169; gold, £4,420; lead, £2,131; tin, £498; other forms of assistance, £8,008. The Mines Department has about twenty batteries throughout the mining fields where prospectors and others can have their ore treated.
- (g) Tasmania. During 1948 the Department of Mines reported that the policy of assistance to mining was maintained to the extent provided for under the provisions of the Aid to Mining Act but no material advantage was taken thereof. In that year £485 was expended and £314 was repaid against advances previously made.

Other assistance rendered to the industry is provided by a well-equipped metallurgical laboratory at Launceston where ore-dressing and other metallurgical problems can be investigated for the mine-owner, and advice given regarding the most suitable type of plant to install.

- (h) Northern Territory. The Commonwealth Government has maintained a ten-head battery at Tennant Creek for the treatment of ore by miners. Another battery has been leased. A ten-head battery is situated on the Maranboy tin-field and crushes ore for all parties on the field. Assistance has been given to miners on the mica fields to purchase air-compressors and other mining plant on liberal terms. The Commonwealth Government has purchased all mica produced on the fields. Roads and water supply services are provided and maintained for all mines and mineral-producing areas throughout the Territory.
- 2. Control of Minerals.—(i) Minerals Committee, and Controller of Minerals Production. With the termination of the war the activities of the Controller of Minerals Production, appointed under the provision of the National Security (Minerals) Regulations, were reduced. In 1948, operations conducted by the Controller were the Dorset Tin Dredge in Tasmania and the acquisition and sale of mica produced in Australia. The Dorset Tin Dredge is in active operation and produces about 150 tons of tin concentrates yearly. It has about ten years of operation in sight.

- (ii) Mica Production. The Commonwealth Government, through the Department of Supply and Development, operates a Mica Pool which purchases all mica won, thus ensuring the miners of a ready market for their product at fixed prices, and also permits an orderly distribution of mica to the trade. Under a recent Cabinet decision, the Commonwealth Mica Pool will operate until the end of 1953.
- (iii) Control of Exports of Metals and Minerals. In order to conserve supplies and to direct surpluses to destinations where most needed, export controls were initiated in 1946. Metals, etc., controlled include copper and copper alloys; iron, steel and scrap; all non-ferrous scrap; zinc dross and dust; antimony metal and concentrates; metallic tin, tin concentrates and ores; and pig lead and scrap and manufactured lead.
- (iv) Atomic Energy (Control of Materials) Act 34 of 1946. This Act provides for control of substances which could be used for production or use of atomic energy. It gives the Commonwealth power to acquire such substances in their natural state and in waste materials from mining operations, to carry on mining and other operations necessary for the recovery of such substances, and to pay compensation for such acquisition. It also gives the Commonwealth power to obtain possession of such substances held by any person.

The Act provides for the notification of discovery of any such substances or mineral containing such substance.